Re-calibration of Arctic sea ice extent datasets using Arctic surface air temperature records

Ronan Connolly 1,*, Michael Connolly 1 and Willie Soon 2

1 Independent scientists, Dublin, Ireland. E-mail: ronanconnolly@yahoo.ie
2 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
* Corresponding author

Abstract A new seasonal and annual dataset describing Arctic sea ice extents for 1901-2015 was constructed by individually re-calibrating sea ice data sources from the three Arctic regions (North American, Nordic and Siberian) using the corresponding surface air temperature trends for the pre-satellite era (1901-1978), so that the strong relationship between seasonal sea ice extent and surface air temperature which has been observed for the satellite era (1979-present) also applies to the pre-satellite era. According to this new dataset, the recent period of Arctic sea ice retreat since the 1970s followed a period of sea ice growth since the mid-1940s, which in turn followed a period of sea ice retreat since the 1910s. Arctic sea ice is a key component of the Arctic hydrological cycle both through its freshwater storage role, and its influence on oceanic and atmospheric circulation. Therefore, these new insights have significance for our understanding of Arctic hydrology.

Keywords: Arctic sea ice; climate change; Arctic hydrological system; Early Twentieth Century Warm Period

Submitted 9 Oct 2016; Accepted 13 Jan 2017; Published online 29 Apr 2017.
This is a preprint of an article published by Taylor & Francis Group in Hydrological Sciences Journal. Published manuscript available online: http://dx.doi.org/10.1080/02626667.2017.1324974

1 INTRODUCTION

Satellite monitoring of Arctic sea ice has highlighted a dramatic decline in sea ice extent since at least the 1970s (e.g., Comiso et al., 2008; Cavalieri and Parkinson, 2012; Meier et al., 2014). This decline has been observed for all seasons, although it is particularly pronounced for the month of September (i.e., late summer/early autumn). However, as the authors recently discussed in Soon et al. (2015), it is known that the Arctic warming since the 1970s followed a period of Arctic cooling since the 1940s, which in turn was preceded by an Early 20th Century Warm (ETCW) period (e.g., Polyakov and Johnson, 2000; Semenov and Bengtsson, 2003; Johannessen et al., 2004; Bengtsson et al., 2004; Kuzmina et al., 2008; Brönniman, 2009; Bekryaev et al., 2010; Wood and Overland, 2010; Yamanouchi, 2011; Brönniman et al., 2012; Semenov and Latif, 2012; Hanna et al., 2012; Suo et al., 2013). There is also evidence that Arctic sea ice extents can vary substantially over multidecadal to centennial time-scales (e.g., Day et al., 2012; Miles et al., 2014). Therefore, in order to assess the significance of the satellite-era Arctic sea-ice trends, it is important to also consider these trends in the context of the longer-term trends over the entire 20th century. For this reason, in this paper, we will develop a new estimate of Arctic sea ice extent trends for the period, 1901-2015.

Because Arctic sea ice trends are closely correlated to Arctic temperature trends, they are often discussed in the context of global temperature trends, e.g., Meier et al. (2014). Meanwhile, in the past, the hydrological community has tended to focus primarily on terrestrial and atmospheric hydrology, rather than sea ice and oceanic hydrology. However, it is important to remember that Arctic sea ice is also a key component of the Arctic hydrological cycle (e.g., Peterson et al., 2006) – see Fig. 1.
Fig. 1. Schematic illustrating the main components of the Arctic hydrological system, including sea ice. P and E correspond to precipitation and evapotranspiration respectively.

As a component of the cryosphere\(^1\) in the Northern Hemisphere, Arctic sea ice directly accounts for some of the freshwater stored in the Arctic Ocean, albeit in solid form. Current estimates of its contribution to total freshwater storage vary from ~12\% (Serreze et al., 2006; Haine et al., 2015) to ~18\% (Aagaard and Carmack, 1989) – see Table 1, which is not insignificant. Holland et al. (2007) even find the mean sea ice storage contribution of 10 different climate models as 22\%, although this result should be treated cautiously as the individual climate models give widely different values. The rest of the freshwater is technically saline, but has a relatively low salinity – typically defined relative to a salinity of 34.8 (Aagaard and Carmack, 1989; Serreze et al., 2006; Haine et al., 2015).

More importantly, because sea ice is a very dynamic component of the Arctic freshwater system, changes in sea ice extent are often one of the biggest contributors to Arctic freshwater trends. For instance, Peterson et al. (2006) argue that there was a net freshening of the Arctic Ocean and seas over the 1960s-1990s period, and that ~50\% of this freshening was due to sea ice melt – see Table 2.

Table 1. Summary of various Arctic freshwater budget surveys estimating the mean freshwater storage of each of the components. Figures taken (with some addition of terms) from Aargard & Carmack (1989); Serreze et al. (2006); Holland et al. (2007). Low salinity freshwater components are calculated relative to a salinity of 34.8. Missing components are noted with a “-“.

<table>
<thead>
<tr>
<th>System</th>
<th>Aargard & Carmack, 1989</th>
<th>Serreze et al., 2006</th>
<th>Holland et al., 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observations</td>
<td>Observations</td>
<td>Mean of 10 climate models</td>
</tr>
<tr>
<td></td>
<td>km(^3)</td>
<td>km(^3)</td>
<td>km(^3)</td>
</tr>
<tr>
<td>Sea ice</td>
<td>Solid</td>
<td>17 300</td>
<td>10 000</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>18%</td>
<td>12%</td>
</tr>
<tr>
<td>Low salinity freshwater</td>
<td>Liquid</td>
<td>80 000</td>
<td>74 000</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>82%</td>
<td>88%</td>
</tr>
<tr>
<td>Ice sheets & glaciers</td>
<td>Solid</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rivers & lakes</td>
<td>Liquid</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Snow & permafrost</td>
<td>Solid</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>Liquid</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Mixed</td>
<td>-</td>
<td>140</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>97 300</td>
<td>84 140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

\(^1\) The cryosphere refers to the regions of the Earth where water is found in its solid form, e.g., ice or snow.
Table 2. Various estimates of Arctic freshwater transport components of the Arctic hydrological system. Figures taken (with some addition of terms) from Peterson et al. (2006); Aagaard & Carmack (1989); Serreze et al. (2006); Dickson et al. (2007); Holland et al. (2006; 2007). Missing components from budgets are noted with a “-”. 10^6 m^3/s = 1 Svedrup (Sv) = 31 536 km^3/year. P-E refers to net Precipitation minus Evapotranspiration.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Sea ice melt</th>
<th>Sea ice export</th>
<th>Freshwater transport</th>
<th>Glacial melt</th>
<th>River runoff</th>
<th>Snow / permafrost</th>
<th>P-E, oceans</th>
<th>P-E, land</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peterson et al., 2006 - Observations</td>
<td>km^3/yr year (%)</td>
<td>817 -</td>
<td>-</td>
<td>-</td>
<td>119</td>
<td>104</td>
<td>-</td>
<td>608</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>50%</td>
<td>-</td>
<td>-</td>
<td>7%</td>
<td>6%</td>
<td>-</td>
<td>37%</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>Aagaard & Carmack, 1989 - Observations</td>
<td>km^3/yr year (%)</td>
<td>-</td>
<td>-2790</td>
<td>-520</td>
<td>-</td>
<td>3300</td>
<td>-</td>
<td>900</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-313%</td>
<td>-</td>
<td>-58%</td>
<td>-</td>
<td>371%</td>
<td>-</td>
<td>101%</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>Serreze et al., 2006 - Observations</td>
<td>km^3/yr year (%)</td>
<td>-</td>
<td>-2460</td>
<td>-3450</td>
<td>-</td>
<td>3200</td>
<td>-</td>
<td>2000</td>
<td>2900</td>
</tr>
<tr>
<td>-</td>
<td>-112%</td>
<td>-</td>
<td>-156%</td>
<td>-</td>
<td>146%</td>
<td>-</td>
<td>91%</td>
<td>132%</td>
<td>100%</td>
</tr>
<tr>
<td>Dickson et al., 2007 - Arctic to Atlantic flux</td>
<td>10^6 m^3/s (%)</td>
<td>-0.088</td>
<td>0.127</td>
<td>0.009</td>
<td>0.102</td>
<td>-</td>
<td>0.065</td>
<td>-</td>
<td>0.215</td>
</tr>
<tr>
<td>Holland et al., 2006 - CCSM climate model</td>
<td>10^6 m^3/s (%)</td>
<td>-0.41</td>
<td>59%</td>
<td>4%</td>
<td>47%</td>
<td>-</td>
<td>30%</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>-</td>
<td>0.104</td>
<td>-</td>
<td>0.09</td>
<td>0.115</td>
<td>-</td>
<td>0.057</td>
<td>-</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>Holland et al., 2007 - 10 climate models</td>
<td>km^3/yr year (%)</td>
<td>-1.841</td>
<td>-1388</td>
<td>-</td>
<td>3162</td>
<td>-</td>
<td>1543</td>
<td>3162</td>
<td>4638</td>
</tr>
<tr>
<td>-</td>
<td>-40%</td>
<td>-30%</td>
<td>-</td>
<td>68%</td>
<td>-</td>
<td>33%</td>
<td>68%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Also, a major component of the annual transport of freshwater out of the Arctic Ocean is via sea ice export (Aagaard & Carmack, 1989; Serreze et al., 2006; Dickson et al., 2007; Haine et al., 2015) – see Table 2 – mainly through Fram Strait (Kwok et al., 2004), although transport through the Canadian Arctic Archipelago is also important (Haine et al., 2015; Münchow, 2016). This general result of a major sea ice export component in Arctic freshwater transport has been replicated by climate models (Holland et al., 2006; 2007), although the exact contributions often differ widely between models (Holland et al., 2007).

Moreover, sea ice indirectly influences the other two key oceanic components of the Arctic hydrological system, i.e., net precipitation minus evapotranspiration (“P-E”) and liquid freshwater transport. Sea ice acts as a regulator between evaporation and precipitation (Kopec et al., 2016), and current climate models predict that decreases in sea ice cover lead to increases in precipitation (e.g., Weatherly, 2004; Deser et al., 2010; Bintanja and Selten, 2014). Indeed, Kopec et al. (2016) have recently confirmed that precipitation rates in the Arctic are directly linked to Arctic sea ice extent (Wake, 2016).

The liquid freshwater component of the Arctic Ocean (technically the freshwater component of low salinity water) is also strongly influenced by the presence or absence of sea ice. That is, the melting of sea ice leads to the formation of a low-salinity melt water layer, while the growth of sea ice increases the salinity of the water underneath (Rudels, 2016).

Finally, Arctic sea ice extent seems to play an important role in mid-latitude weather via its influence on atmospheric and oceanic circulation patterns (e.g. Aagaard and Carmack, 1989; Francis et al., 2009; Cohen et al., 2014; Vihma, 2014; Overland et al., 2015). Therefore, Arctic sea ice is also of relevance for mid-latitude precipitation patterns (Vihma, 2014). For instance, the East Asian summer monsoon seems to be strongly influenced by the spring Arctic sea ice extent (Guo et al., 2014) and Liu et al. (2012) have found that summer Arctic sea ice area influences winter snowfall in Europe and the United States.

For these reasons, accurate estimates of medium-to-long-term Arctic sea ice extent trends are of particular importance for studying Arctic hydrological trends. However, the widely-used satellite-derived sea ice estimates only cover the post-1970s period. Therefore, developing a reliable long-term Arctic sea ice dataset which includes the pre-satellite era would be of considerable value for improving our understanding of Arctic hydrology.

Although there are several useful sea ice datasets which predate the satellite era, such as the “Walsh” (Walsh and Johnson, 1979; Walsh and Chapman, 2001; Walsh et al., 2015; Walsh et al., 2017), “Vinje” (Vinje, 2001; ACSYS, 2003; Divine and Dick, 2006) and “Zakharov” (Zakharov, 1997; Mahoney, 2008; Frolov et al., 2012).
datasets, these pre-satellite estimates are constructed from different data sources for different periods. For instance, for the 1920s-1930s, data is mostly limited to occasional observations from ships, airplanes and weather stations, while for the 1950s-1970s, data from drifting buoys as well as more regular ship and air-based observations is also available.

Moreover, in some cases there is no overlap between individual data sources. For example, single-channel passive microwave satellite measurements from NIMBUS-5 were recorded from late-1972 until early 1977, providing some useful satellite data for the mid-1970s. However, the current multi-channel passive microwave satellite-derived estimates did not begin until October 1978 (Cavalieri et al., 1984). This lack of overlap prevents a direct simultaneous comparison between the two datasets. So, while some studies have compared and contrasted the different trends of the two sets of satellite data (e.g., Parkinson and Cavalieri, 1989; Meier et al., 2012), most analyses of the satellite era begin in 1978 (e.g., Comiso et al., 2008; Cavalieri and Parkinson, 2012; Meier et al., 2014).

Prior to the satellite era, geopolitical considerations were also a problem for the compilers of datasets. In particular, during the Cold War, data-sharing between the Soviet Union and western Arctic nations was almost non-existent. As a result, for the pre-satellite era, the American-based Walsh group had very few observations for the Russian Arctic, and in their dataset most of the estimates for these regions were based on (often crude) extrapolations and inferences. For this reason, while their dataset nominally describes the entire Arctic Ocean and seas before the satellite era (and especially pre-1953), it is probably better considered as an estimate for the North American and Nordic Arctic. It is worth noting that the Walsh dataset is the primary pre-1972 data source for the Hadley Centre’s popular HadISST dataset (Rayner et al., 2003; Titchner and Rayner, 2014). On the other hand, the Russian-based Zakharov group had very few observations for the North American Arctic, and as a result, their datasets only consider the Russian and Nordic regions. However, since the publication of Mahoney (2008), both datasets are now publicly available. So, in this paper, we will combine the Russian dataset with the western datasets, to provide a new pan-Arctic estimate for the pre-satellite era. At the time of writing, an update to the Walsh dataset was in preparation which apparently will include the Russian dataset (Walsh et al., 2015; Walsh et al., 2017). We note that while we were writing this paper, Pirón & Pasalodos (2016) also independently decided to combine these two datasets for their reconstruction of September sea ice extents.

The above inconsistencies introduce considerable challenges into attempts to composite all of the multiple data sources into a single sea ice extent index spanning the period since the early 20th century. However, the decline in Arctic sea ice extent during the satellite era coincided with a corresponding increase in the average surface air temperatures for the Arctic. This is consistent with a strong relationship between Arctic sea ice extent and Arctic surface air temperatures, suggesting that Arctic surface air temperature trends can be used as an indirect proxy for calibrating Arctic sea ice trends, particularly for the Arctic summer (Alekseev et al., 2016).

Indeed, Alekseev et al. (2016) recently used Arctic summer surface air temperatures as a direct (inverse) proxy for September Arctic sea ice extent by applying a simple linear regression relationship. Alekseev et al.’s approach bypasses the problems from the multiple data sources described above. It therefore offers a useful approximate estimate of Arctic September sea ice extent trends for the 1900-2013 period. However, because the Alekseev et al. (2016) reconstruction is essentially an inverse Arctic summer temperature index, it cannot be used for studying the relationship between Arctic sea ice extent and surface air temperatures outside the satellite era (as that would lead to circular logic). Also, it discards all of the pre-satellite era direct observations of Arctic sea ice which are incorporated into the Walsh and Zakharov datasets.

Another related approach is to use climate models forced with prescribed empirical temperature data to evaluate sea ice data or vice versa (e.g., Kauker et al., 2008; Brönniman et al., 2008; Semenov & Latif, 2012; Semenov, 2014). For instance, Kauker et al. (2008) used the sea ice component of a climate model to estimate how the sea ice extents should have varied over the 1900-1997 period given the observed Arctic meteorological conditions (mainly in terms of surface air temperatures and sea level pressures) over that period. Most of their simulated sea ice reconstructions showed similarities with the Zakharov dataset and others. This offers further evidence that the sea ice – temperature relationship probably also applied during the pre-satellite era.

With that in mind, in this paper, we take an intermediate approach which preserves useful information provided by the pre-satellite era Arctic sea ice datasets, but also uses information from Arctic surface air
temperature trends to reduce the problems arising from changes in data sources. Specifically, we first divide the Arctic Ocean into three separate regions – North American Arctic; Nordic Arctic; and Siberian Arctic. We then use the seasonal relationships for each of these regions between Arctic surface air temperatures and sea ice extents during the satellite era as a baseline. This baseline is then used to re-calibrate each of the individual components of the pre- and post-satellite era sea ice extent measurements. These re-calibrated components are then composited together to construct seasonal sea ice extent indices for each of the three regions. These regional estimates are then used to construct new annual and seasonal Arctic sea ice extent indices from 1901-2015. Because much of the pre-satellite era data is quite limited, we confine our analysis specifically to sea ice extents and therefore do not consider some of the more detailed sea ice observations which have become possible in recent years such as sea ice thickness or volume (e.g., Tilling et al., 2015).

Fig 2. Mean Northern Hemisphere sea ice extents over the period 1989-2015, as derived from the DMSP satellite measurements. Each of the three Arctic regions are outlined with solid red lines, and the ice extent within these regions are shaded with different colours. The locations of the rural stations used for determining surface air temperature trends for these regions are also shown.
2 ARCTIC REGION DEFINITIONS

For the purposes of this study, we divide the Arctic Ocean and Seas into three different regions – see Fig. 2. These geographic areas comprise the North American Arctic, the Nordic Arctic and the Siberian Arctic. In keeping with the International Hydrographic Organization (IHO)’s “Names and Limits of Oceans and Seas” (International Hydrographic Organization, 2002), all of the seas considered have a lower latitude limit of at least 60°N, with the exception of Hudson Bay and Hudson Strait (both of which have a southern limit less than 60°N). Therefore, our analysis does not consider some of the lower latitude seas in the Northern Hemisphere with winter sea ice, e.g., the Bering Sea, the Sea of Okhotsk, Gulf of St. Lawrence and the Baltic Sea. Seasonal sea ice in these non-Arctic seas are shown in white in Fig. 2.

There are some useful datasets which provide some information about sea-ice coverage in the pre-satellite era for some of these seasonal sea ice regions. For instance, Mahoney et al. (2011) have compiled sea-ice observations for the Bering Sea (and Chukchi Sea) from the logbooks and journals of whaleships, and Hill et al. (2002) have compiled a similar dataset for the Gulf of St. Lawrence and Nova Scotia from a variety of data sources. This raises the possibility that our analysis could also be extended to incorporate the non-Arctic regions of the Northern Hemisphere where seasonal sea ice can occur. Apparently, the new version of the Walsh dataset which was in preparation at the time of writing will incorporate these non-Arctic datasets (Walsh et al., 2015). However, it can be seen from Fig. 2 that the three Arctic regions comprise most of the sea ice extent at the peak of the Arctic winter (~80-82% in March) and almost all of the sea ice extent during the Arctic summer (~98-99% in September). Therefore, for this study, we will confine our analysis to the Arctic Seas and Ocean.

We can see from Fig. 2, that the minimum Arctic sea ice extent for all regions occurs in early-September and the maximum extent occurs in early-March. For this reason, when describing the Arctic seasons, it is common to define winter as January, February and March; spring as April, May and June; summer as July, August and September; and autumn as October, November and December. For consistency with previous studies (e.g., Walsh and Chapman, 2001; Zakharov, 1997), we will also use these definitions.

These Arctic season definitions are often surprising to those unfamiliar with the Arctic sea ice climatology since we are used to the Northern Hemisphere seasons being defined, e.g., in terms of the winter solstice (21st December) and summer solstice (21st June). However, in the Arctic, the regimes of sea ice growth and melt play a more dominant role in defining seasonality than at lower latitudes. These regimes are influenced by factors such as the feedback between sea ice coverage and albedo (e.g., Curry et al., 1995; Perovich and Polashenski, 2012). That is, as the amount of incoming sunlight increases during the summer, melting the sea ice, the surface albedo is reduced, meaning more sunlight is absorbed, which melts the sea ice further. Due to factors such as this, the peaks and troughs in sea ice extent lag the corresponding peaks and troughs in day length by ~3 months (Zakharov, 1997).

3 DATA AND METHODS

Aside from a small blind-spot at the poles, arising from the orbit paths of the satellites involved, the passive microwave satellite-derived sea ice estimates provide almost complete geographical coverage (Cavalieri et al., 1984; Cavalieri et al., 1996; Maslanik and Stroeve, 1999; Ivanova et al., 2015). They also provide measurements quite frequently – daily since 1987 (albeit with a two month gap during December 1987-January 1988). Therefore, we can have a relatively high confidence in our estimates of total and regional sea ice extents during the satellite era.

Unfortunately, as discussed above, the available sea ice observations for most of the pre-satellite era (i.e., before 1970s) are quite limited both spatially and temporally. As a result, the actual sea ice conditions for many regions of the Arctic were not observed by the various monitoring groups. Additionally, the observation methods and practices used by each of the groups varied substantially over the years – generally improving over time.
This means that the uncertainty associated with total sea ice estimates increases dramatically the further back in time we go back. However, ironically, the annual and seasonal variability implied by the observations is reduced for these earlier years because the data coverage is so much more limited. This could have led to an underestimation of sea ice variability in the pre-satellite era (particularly for the earlier decades), potentially introducing a coverage bias into the pre-satellite era trends. This is analogous to the underestimation of early-to-mid 20th century hurricane frequencies which seems to have occurred before the installation of systematic hurricane detecting networks (e.g., Landsea et al., 2008).

In this paper, we have attempted to reduce the magnitude of these problems with the pre-satellite data by availing of the observed relationships between Arctic surface air temperatures and Arctic sea ice extent (e.g., Zakharov, 1997; Alekseev et al., 2016). Specifically, we determined the relationships between surface air temperatures and sea ice extent for each of the seasons and regions during the satellite era, using linear least-squares fits.

We explicitly assume that these relationships would have also been (at least broadly) similar during the pre-satellite era. Therefore, like Alekseev et al. (2016), we used these relationships to convert our regional and seasonal temperature reconstructions into proxies for the corresponding sea ice extents. However, these sea ice extent proxies do not contain any of the information from the actual pre-satellite era sea ice observations. So, unlike Alekseev et al. (2016), we only used these proxies as an additional dataset for recalibrating the pre-satellite era datasets, or when direct observations are unavailable.

For a given region, we split up the available pre-satellite datasets into different periods, corresponding to the major changes in data sources. For instance, for the Walsh dataset (Section 3.3), the 1953-1971 period was analysed separately from the pre-1953 periods, since it has much greater spatial coverage (Walsh and Johnson, 1979; Walsh and Chapman, 2001; Walsh et al., 2015; Walsh et al., 2017).

For each of the seasons, regions and periods, we rescaled the data series so that its mean and standard deviation were the same as that for our temperature-derived sea-ice extent proxy for the corresponding season, region and period. This has similarities to the approach used by Meier et al. (2012) to recalibrate 1953-1977 pre-satellite and early satellite data to be more consistent with the 1978-2011 satellite data. Each of these rescaled components was then composited together to provide regional and seasonal estimates for the entire 1901-2015 period. The regional estimates were then composited together to give seasonal estimates for the entire Arctic region.

Most of the gridded datasets we analysed in this paper use slightly different formats and data types. So, for each of the gridded datasets, we wrote separate scripts using the Python programming language (https://www.python.org/) to calculate the relevant seasonal data series for each of the Arctic regions. These seasonal data series were then analysed, re-calibrated and composited together with the non-gridded datasets using a popular spreadsheet package (MS Excel, https://products.office.com/en/excel). These data series, along with our final re-calibrated sea ice extent indices, are provided in the Supplementary Information. Additionally, the Python scripts and further output files from the analysis are archived on the FigShare website at https://doi.org/10.6084/m9.figshare.4879565.v2.

In the rest of this section, we briefly discuss the different datasets we will use for this analysis.

3.1 Surface air temperature data (1900-2015)

The source we used for determining surface air temperature trends was version 3 of the Global Historical Climatology Network (GHCN) monthly dataset, which was downloaded from http://www.ncdc.noaa.gov/ghcnm/ [Accessed 11th January 2016]. This dataset of monthly-averaged weather station temperature records is compiled and maintained by the US-based NOAA National Centers for Environmental Information (Lawrimore et al., 2011). They provide two versions of the dataset. The first dataset contains the raw monthly station records with only some minor quality control adjustments, but the records for the second dataset have been adjusted by the automated homogenisation algorithm of Menne & Williams (2009) in an attempt to remove/reduce any non-climatic biases which may exist in the raw station records. We will refer to the former as the “unadjusted dataset” and the latter as the “MW09-adjusted dataset”.

In the rest of this section, we briefly discuss the different datasets we will use for this analysis.

3.1 Surface air temperature data (1900-2015)

The source we used for determining surface air temperature trends was version 3 of the Global Historical Climatology Network (GHCN) monthly dataset, which was downloaded from http://www.ncdc.noaa.gov/ghcnm/ [Accessed 11th January 2016]. This dataset of monthly-averaged weather station temperature records is compiled and maintained by the US-based NOAA National Centers for Environmental Information (Lawrimore et al., 2011). They provide two versions of the dataset. The first dataset contains the raw monthly station records with only some minor quality control adjustments, but the records for the second dataset have been adjusted by the automated homogenisation algorithm of Menne & Williams (2009) in an attempt to remove/reduce any non-climatic biases which may exist in the raw station records. We will refer to the former as the “unadjusted dataset” and the latter as the “MW09-adjusted dataset”.

In the rest of this section, we briefly discuss the different datasets we will use for this analysis.

3.1 Surface air temperature data (1900-2015)

The source we used for determining surface air temperature trends was version 3 of the Global Historical Climatology Network (GHCN) monthly dataset, which was downloaded from http://www.ncdc.noaa.gov/ghcnm/ [Accessed 11th January 2016]. This dataset of monthly-averaged weather station temperature records is compiled and maintained by the US-based NOAA National Centers for Environmental Information (Lawrimore et al., 2011). They provide two versions of the dataset. The first dataset contains the raw monthly station records with only some minor quality control adjustments, but the records for the second dataset have been adjusted by the automated homogenisation algorithm of Menne & Williams (2009) in an attempt to remove/reduce any non-climatic biases which may exist in the raw station records. We will refer to the former as the “unadjusted dataset” and the latter as the “MW09-adjusted dataset”.

In the rest of this section, we briefly discuss the different datasets we will use for this analysis.

3.1 Surface air temperature data (1900-2015)

The source we used for determining surface air temperature trends was version 3 of the Global Historical Climatology Network (GHCN) monthly dataset, which was downloaded from http://www.ncdc.noaa.gov/ghcnm/ [Accessed 11th January 2016]. This dataset of monthly-averaged weather station temperature records is compiled and maintained by the US-based NOAA National Centers for Environmental Information (Lawrimore et al., 2011). They provide two versions of the dataset. The first dataset contains the raw monthly station records with only some minor quality control adjustments, but the records for the second dataset have been adjusted by the automated homogenisation algorithm of Menne & Williams (2009) in an attempt to remove/reduce any non-climatic biases which may exist in the raw station records. We will refer to the former as the “unadjusted dataset” and the latter as the “MW09-adjusted dataset”.

In the rest of this section, we briefly discuss the different datasets we will use for this analysis.

3.1 Surface air temperature data (1900-2015)

The source we used for determining surface air temperature trends was version 3 of the Global Historical Climatology Network (GHCN) monthly dataset, which was downloaded from http://www.ncdc.noaa.gov/ghcnm/ [Accessed 11th January 2016]. This dataset of monthly-averaged weather station temperature records is compiled and maintained by the US-based NOAA National Centers for Environmental Information (Lawrimore et al., 2011). They provide two versions of the dataset. The first dataset contains the raw monthly station records with only some minor quality control adjustments, but the records for the second dataset have been adjusted by the automated homogenisation algorithm of Menne & Williams (2009) in an attempt to remove/reduce any non-climatic biases which may exist in the raw station records. We will refer to the former as the “unadjusted dataset” and the latter as the “MW09-adjusted dataset”.

In the rest of this section, we briefly discuss the different datasets we will use for this analysis.

3.1 Surface air temperature data (1900-2015)

The source we used for determining surface air temperature trends was version 3 of the Global Historical Climatology Network (GHCN) monthly dataset, which was downloaded from http://www.ncdc.noaa.gov/ghcnm/ [Accessed 11th January 2016]. This dataset of monthly-averaged weather station temperature records is compiled and maintained by the US-based NOAA National Centers for Environmental Information (Lawrimore et al., 2011). They provide two versions of the dataset. The first dataset contains the raw monthly station records with only some minor quality control adjustments, but the records for the second dataset have been adjusted by the automated homogenisation algorithm of Menne & Williams (2009) in an attempt to remove/reduce any non-climatic biases which may exist in the raw station records. We will refer to the former as the “unadjusted dataset” and the latter as the “MW09-adjusted dataset”.

In the rest of this section, we briefly discuss the different datasets we will use for this analysis.

3.1 Surface air temperature data (1900-2015)
From Fig. 3, we can see that the long-term temperature trends for the Arctic region are quite similar for both the unadjusted and the MW09-adjusted datasets. That is, both datasets imply that the Arctic went through a period of warming (~1900s-1940s), followed by a period of cooling (~1940s-1970s), followed by another period of warming (~1970s-present). As discussed in the introduction, the existence of this alternation between warming and cooling periods for the Arctic over the 20th century has been well-documented. The available temperature records suggest that 19th century Arctic temperatures were cooler than for the 20th century (Przybylak et al., 2010), however the data available for this earlier period is very limited and for this paper we will stick to the period from 1901-present.

The net effect of the MW09-adjustments is to slightly reduce the apparent warmth of both the present warm period and the early-20th century warm period, and so the relative warmth of both warm periods is comparable for both datasets. Also, the timing of the warming and cooling periods is the same. Therefore, the results of our analysis in this paper should be quite similar, regardless of which dataset we use. In this paper, we use the unadjusted dataset. However, for interested readers, the equivalent analysis using the MW09-adjusted dataset is also provided in the Supplementary Information.

The procedure we used for determining the regional temperature trends from the GHCN dataset is essentially the same one we used in Soon et al. (2015), and the details are described there (and references therein). However, for our Arctic region in Soon et al. (2015), we limited our analysis strictly to those stations within the “Arctic Circle”, i.e., those north of 66° 33’N. This meant we could only use 77 stations. For this paper, we are using a less restrictive definition for the Arctic (see Section 2), since the average Arctic sea ice extent covers a wider region than just the Arctic Circle. Therefore, for this analysis, Arctic stations are defined as those north of 60°N.

As we noted in Soon et al. (2015), while the Arctic is a relatively unpopulated region and is therefore generally unaffected by urbanization, weather stations tend to be near/in human settlements. Hence, urbanization bias can still occur for Arctic weather stations, e.g., Hinkel and Nelson (2007); Konstantinov et al. (2015). Because we were restricted by the shortage of Arctic Circle stations, some of the stations (23%) we used
for Soon et al. (2015) showed at least some signs of urbanization, and so it is plausible that urbanization bias might have slightly contributed to the trends for that region. However, as the analysis in this paper covers a wider area than just the Arctic Circle, there are more stations available. Therefore, we only use GHCN stations that are “fully rural”, i.e., rural in terms of both associated population and night-light intensity – see Soon et al. (2015) for a discussion.

3.2 Satellite-derived Arctic sea ice extent data (1978-2015)

For our satellite-era estimates of sea ice extents, we used the NASA Team’s gridded datasets (Cavalieri et al., 1996; Maslanik and Stroeve, 1999), which we downloaded from the National Snow and Ice Data Center (NSIDC) website, https://nsidc.org/ [Accessed 14th January 2016]. Together, these datasets cover the period, October 1978 to present. Using a Python script, we used these datasets to calculate the average seasonal sea ice extent in each year for each of our Arctic regions.

We should note that the 1978-present satellite record is actually a composite of several different satellites, i.e., Nimbus-7; DMSP-F8; DMSP-F11; DMSP-F13; and DMSP-F17 (Cavalieri et al., 1996; Maslanik and Stroeve, 1999). Each of these satellites had slightly different sensors, orbits, calibrations, etc., and only operated for a decade or so. So, it is plausible that some of the apparent long-term trends in the satellite estimates could be a consequence of the changes in satellites. However, aside from a 2 month gap in late 1987, there was usually a short overlap between the end of one satellite mission and the beginning of the next. This means that Cavalieri et al. were able to use these overlapping periods to recalibrate the data from each of the individual satellites to provide a reasonably consistent dataset (Cavalieri et al., 1996; Maslanik and Stroeve, 1999).

It is important to stress that microwave satellite-derived estimates of sea ice concentrations are not based on actual observations of sea ice conditions, as might be initially assumed. Rather, the sea ice concentrations in a given area are inferred from the spectral properties of the microwave emissions from that area during the satellite’s orbit, using an automated computer algorithm (e.g., Cavalieri et al., 1984; Ivanova et al., 2015). These algorithms typically try to distinguish between the microwave emissions from open water, land, sea ice and different categories of sea ice (e.g., multi-year sea ice versus newly-formed sea ice) by comparing the emissions at different microwave frequencies, although these comparisons are not possible for the earlier NIMBUS-5 satellite (1972-1977), which only had a single-channel passive microwave detector. However, although these automated algorithms are generally quite accurate, they are not perfect and sometimes provide misleading artefacts which direct visual observations would avoid. For instance, the microwave emissions from open water are very hard to distinguish from temporary melt-water pools on the surface of sea ice sheets. For this reason, the microwave satellite estimates tend to underestimate the total sea ice area when there are a lot of melt-water pools, which is particularly common during the Arctic summer (e.g., Cavalieri et al., 1984; Ivanova et al., 2015).

If these artefacts of the automated algorithms lead to a systematic underestimation of the total Arctic sea ice extents, but it is by a similar amount every year, then this should not be a major problem for our analysis, since our pre-satellite estimates will be rescaled as part of our reconstruction. However, suppose the relative fraction of melt-water pools increases during relatively warm periods (for instance). In that case, it is plausible that the satellite estimates could potentially exaggerate the rate of melting during the recent Arctic warming relative to terrestrial observations. This introduces a potential problem in comparing the satellite era estimates with pre-satellite observations during earlier periods of Arctic warming, such as the 1920s-1940s. However, for our analysis in this paper, we will explicitly assume that these satellite-derived estimates are reasonably accurate. This is supported by the reasonable agreement with the other sea ice datasets and the surface air Arctic temperature trends during the 1978-2015 period.

Moreover, although the satellite-derived estimates are sometimes less accurate than direct visual observations would be, they provide nearly complete geographical coverage (except for the orbital “blind-spot” near the poles). For this reason, the satellite-derived estimates of total and regional sea ice extents are probably more consistent and reliable than those from the pre-satellite era, which were derived from spatially incomplete and intermittent observations.
There is considerable debate over which of the various algorithms is most reliable for estimating sea ice concentrations, e.g., see Ivanova et al. (2015) for a comparison of the main algorithms. However, the long-term trends implied by all of the current algorithms during the satellite era are broadly similar. The algorithm used for the NASA Team’s satellite datasets which we used in this paper was described in Cavalieri et al. (1984).

In this paper, we define the seasonal sea ice “extent” as the total area of those gridboxes with a mean sea ice concentration of at least 15% for that season. The mean seasonal sea ice extents for each of the regions over the satellite era are plotted in Fig. 4.

![Fig. 4. Mean seasonal sea ice extents (in million km²) for each of the regions during the satellite era: (a) North American Arctic; (b) Nordic Arctic; (c) Siberian Arctic; (d) Non-Arctic.](image)

Although the North American and Siberian Arctic together account for most of the sea ice extent, for both of these regions, there has been very little variability in sea ice extent in the winter, spring or autumn. Instead, almost all of the variability in sea ice extent for these regions occurred during the summer season (although there was some variability for the North American Arctic during the autumn). Therefore, most of the variability in Arctic sea ice extent during the winter and spring (and to a lesser extent the autumn) occurred in the Nordic Arctic. This is in keeping with the analysis in Section 2. On the other hand, during the summer season, all three Arctic regions showed a general decrease in sea ice extent over the satellite era (1979-2015), as has been noted elsewhere (e.g., Comiso et al., 2008; Cavalieri and Parkinson, 2012; Meier et al., 2014).

3.3 The “Walsh” sea ice dataset (1901-2011)

At the time of writing, the most widely-used estimates for Arctic sea ice extents during the pre-satellite era are the so-called “Walsh dataset” developed by Walsh et al. (Walsh and Johnson, 1979; Walsh and Chapman, 2001; Walsh et al., 2015; Walsh et al., 2017), and the Hadley Centre’s HadISST dataset (see Section 3.5) which is based on the Walsh dataset. Version 1 of the Walsh dataset was one of our main sources for pre-satellite ice extents, which we downloaded from http://arctic.atmos.uiuc.edu/SEAICE/ [Accessed 12th January 2016].
Sea ice concentrations in the Walsh dataset are only reported to the nearest 10%, which is a problem since the standard definition of sea ice extent which we use for this study is a sea ice concentration of at least 15%. However, when calculating the average seasonal extents, we calculated the sea ice concentrations for each grid box (to the nearest 10%) for all three months. If the average concentration over the three month period was greater than 15%, then that grid box was treated as being within the sea ice extent for that year.

Up until 1953, the spring and summer estimates in the Walsh dataset are predominantly based on Arctic sea ice charts compiled by the Danish Meteorological Institute (DMI) (DMI and NSIDC, 2012) and digitised by Kelly (1979). For the autumn and winter estimates for the pre-1953 period, Walsh and Chapman (2001) primarily relied on ship reports which were also provided by the DMI. Separately, Vinje et al. (Vinje, 2001; ACSYS, 2003; Divine and Dick, 2006) compiled estimates of the sea-ice edges2 for the Nordic Seas with some observations dating back to 1553. Walsh and Chapman (2001) also used this Vinje dataset in their estimates for the Nordic Seas.

Fig. 5(a) provides a typical example of one of the DMI sea ice charts (from August 1952). While these sea ice charts nominally provide estimates for the entire Arctic region, it is striking how sparse the regions where estimates were derived from actual observations (coloured in red) are. Most of the observations the DMI chart compilers had were from the Nordic Arctic and to a lesser extent the Canadian Arctic. Particularly during

2 Although the sea ice edge is not the exact same as the sea ice extent, both metrics are related, and so this data can be used for estimating sea ice extents (and concentrations).
the Cold War, the DMI had very few observations for the Russian Arctic and most of their estimates for this region were described by the compilers as “ice supposed but no information at hand”. Therefore, since these DMI charts are the primary pre-1953 data source for the Walsh dataset, the pre-1953 estimates for the Russian Arctic (in particular) should be treated with considerable caution.

3.4 The “Russian” sea ice datasets (1900-2008)

As discussed above, the pre-satellite era portion of the Walsh dataset contained very little information for the Russian Arctic region east of the Barents Sea, i.e., the Kara, Laptev, East Siberian and western Chukchi Seas. On the other hand, these were regions that were routinely monitored by Russian researchers, particularly in the second half of the 20th century. In 2007, in conjunction with the U.S.-based National Snow and Ice Data Center (NSIDC), the Russian-based Arctic and Antarctic Research Institute (AARI) digitised and published several datasets based on this data (Arctic and Antarctic Research Institute, 2007; Mahoney, 2008; Mahoney et al., 2008; Frolov et al., 2009). Much of the analysis by Zakharov (1997) was based on an earlier version of this dataset. Mahoney et al. (2008) specifically noted that this Russian data had not been incorporated into the Walsh dataset, or the related HadISST dataset, and they recommended that it should be included in future historical datasets of Arctic sea ice. In this study, we will follow this recommendation. While we were preparing this paper, Pirón & Pasalodos (2016) independently developed a new Arctic sea ice dataset which also followed this recommendation and apparently an update to the Walsh dataset is in preparation which will also incorporate the Russian dataset (Walsh et al., 2015; Walsh et al., 2017).

One of the AARI datasets consists of a digitised compilation of Russian sea ice charts for the period 1933-2006 (Arctic and Antarctic Research Institute, 2007) with a gap during the period 1993-1996. These sea ice charts covered various parts of the Siberian Arctic, i.e., the Barents, Kara, Laptev, East Siberian and western Chukchi Seas – see Fig. 5(b).

It is worth directly comparing Figs 5(a)-(b), since both of these maps describe the sea ice extent for the exact same month and year (August 1952), but using different data sources. While the AARI estimates (Fig. 5(b)) only describe the regions for which the AARI had observations (i.e., part of the Russian Arctic), the DMI sea ice charts (Fig. 5(a)) nominally describe the entire Arctic, including the Russian Arctic. However, when the DMI charts were being compiled, the compilers did not have any actual observations for most of the regions they were considering. As a result, for many regions (especially the Russian Arctic), their estimates for a given month are often little more than guesses.

Indeed, we can see that all of the regions in Fig. 5(b) which the AARI directly observed to be ice-free in August 1952 were incorrectly assumed (without any observations) to be ice-packed in the corresponding DMI chart. For this reason, the “supposed ice” regions in the DMI charts (i.e., the primary pre-1953 data source for the Walsh dataset) should be treated sceptically. Therefore, we used the AARI datasets as our primary source for the pre-satellite era Russian Arctic.

Although there is some Russian sea ice data for the early 20th century (Frolov et al., 2009), systematic observations by the AARI did not begin until about 1933, following the decision by Russia during the 2nd International Polar Year in 1932 to develop the Northern Sea Route as a regular transport route (Mahoney et al., 2008).

For the earlier part of the 1933-2006 record, the charts were derived from systematic aircraft reconnaissance 1-3 times per month, along with ship and coastal observations. However, from 1953-1972, these were supplemented by observations from a network of drifting buoys, and beginning in the late 1960s, satellite observations (Mahoney et al., 2008). The first satellite observations (1966-present) used instruments which only analysed the visible range, but later satellites (1972-present) were also able to monitor infrared frequencies.

Initially, aerial reconnaissance was mostly limited to the summer months and the spatial coverage did not extend far into the central Arctic (Mahoney et al., 2008). However, the coverage generally improved over time. Also, while the earlier aerial reconnaissance was just based on visual observations, from 1951-1992, aerial photography and other instrumented observations were also incorporated.
Although the AARI sea ice charts do not provide complete spatial coverage for the Russian Arctic (especially for the earlier years), Mahoney et al. (2008; Mahoney, 2008) developed an automated algorithm to estimate the average monthly and seasonal ice extents for each of the Russian Seas when and where observations were available. This dataset was our primary source for sea ice extents in the Siberian Arctic for the period, 1933-2006. It was downloaded from http://nsidc.org/ [Accessed 16th January 2016] (Mahoney, 2008).

For some years (particularly in the earlier period), Mahoney et al. (2008; Mahoney, 2008) did not have seasonal estimates for all four of the Siberian seas, i.e., Kara, Laptev, East Siberian and Western Chukchi. However, as discussed in the Supplementary Information, the average sea ice extent for each of the four seas is closely related to the total Siberian Arctic sea ice extent for a given season. With this in mind, for those years when we did not have data for all four seas in a given season, we estimated the total Siberian sea ice extent by extrapolation from those seas which did have data.

Additionally, Frolov et al. (2009) combined the more systematic AARI sea ice charts with a variety of other sources containing descriptions of early Arctic voyages and other observations to develop an extended reconstruction of August (i.e., mid-summer) sea ice extents for the Nordic and Siberian regions, covering the period, 1900-2008. Their reconstruction also estimated April (i.e., end-of-winter) sea ice extents for the Nordic region (i.e., the Greenland and Barents Seas). We used this dataset to extend our Siberian analysis to include the 1901-1933 period. However, it is important to stress that the data these pre-1933 estimates were derived from is rather limited, and should be treated with particular caution.

As with the Mahoney et al. datasets, the Frolov et al. Siberian reconstruction provides estimates for each of the four Siberian seas. However, while the Mahoney et al. datasets nominally included the Siberian region of the Arctic Ocean north of these four seas, the Frolov et al. estimates do not. This extra region comprises approximately 1 952 000 km², which is ~44% of the Siberian Arctic region. However, this region is almost entirely ice-packed even during the summer. Therefore, for the 1900-1933 period of our analysis when we used the Frolov et al. dataset, we added 1 952 000 km² to all of the estimates for consistency with the Mahoney et al. estimates. This implicitly assumed that the ice extent for this northern region of the Siberian Arctic remained complete over the 1901-1933 period.

Also, the Frolov et al. Siberian estimates nominally represent the mean sea ice extents for August, rather than for the entire July-September summer season. From Fig. 2, we can see that the mean August sea ice extents are a reasonable proxy for the mean summer sea ice extents. Therefore, for this earlier period, we used the Frolov et al. “August” estimates as a proxy for Siberian summer sea ice extents. However, as we will discuss in Section 4, these estimates were then rescaled to match the observed temperature relationship in the satellite era for the region using the entire summer season. Therefore, the rescaled Frolov et al. estimates used in our final reconstruction are representative of the entire summer season.

3.5 Other sea ice datasets

Although the main dataset used for assessing Arctic sea ice trends since the 1970s was the satellite-derived gridded dataset described in Section 3.2, there is a similar, yet slightly longer dataset (1972-present) which is derived from biweekly to weekly sea ice charts compiled by the U.S. National Ice Center (NIC) (National Ice Center, 2006). The primary data sources used by the compilers of these charts were the satellite data (including the 1972-1977 NIMBUS-5 satellite mentioned in the introduction), and so the trends from both datasets are quite similar.

The most popular sea ice dataset used by the scientific community in recent years is the Hadley Centre’s HadISST dataset (Rayner et al., 2003; Titchner and Rayner, 2014). However, as mentioned in Section 3.2, for the pre-satellite era, the HadISST dataset is predominantly based on the Walsh dataset and so for our analysis we used the Walsh dataset directly instead. For version 1 of the HadISST, the post-1978 estimates are derived from the satellite estimates (Rayner et al., 2003). However, at the time of writing, version 2 of the HadISST dataset was in development, and for this version, the post-1972 period will be derived from the NIC sea ice charts instead (Titchner and Rayner, 2014).
Meier et al. (2012) have noted some inconsistencies between version 1 of the HadISST dataset and the satellite-based estimates during the satellite era. For this reason, they adjusted the 1953-1978 period of the HadISST dataset to create a more consistent 1953-2011 data series.

In this paper, we confined our analysis to the Arctic region. However, as mentioned in Section 2, there are also some useful datasets which provide information about seasonal sea ice trends in some of the non-Arctic seas in the Northern Hemisphere (e.g., Mahoney et al., 2011; Hill et al., 2002).

In Section 5, we compare our Arctic summer sea ice extent estimates to several alternative estimates of September Arctic sea ice extent trends:

- Pirón & Pasalodos (2016)
- Alekseev et al. (2016);
- Global Climate Model (GCM) hindcasts from the IPCC CMIP5 project.

The Pirón & Pasalodos (2016) estimates were taken from the supplementary information of their paper which was downloaded from http://dx.doi.org/10.5281/zenodo.44756 [Accessed 6th February 2016]. The Alekseev et al. (2016) estimates were obtained from personal communication. The GCM hindcasts were digitised from Figure 3 of Overland and Wang (2013).

4 REGIONAL ARCTIC ANALYSES

Table 3 lists the linear relationships between seasonal surface air temperature anomalies (relative to 1961-1990) and seasonal sea ice extents for each of the three Arctic regions during the 1978-2015 satellite era, as determined using linear least squares fitting. In the Supplementary Information, the linear relationships are also plotted graphically, along with a brief review of the relevance of the statistics.

When we consider the slopes for each of the regions and seasons, we can see that the response of sea ice extent to temperature changes is quite pronounced for the Nordic Arctic for all seasons, but for the North American and Siberian Arctic it is mostly a summer phenomenon (and to a lesser extent an autumn phenomenon). For the Siberian winter and spring, the slopes of the lines are very small relative to the total sea ice extent, at only -100 km2/°C and -600 km2/°C respectively. This is because the Siberian region is effectively ice-packed during these seasons. This is also apparent from the fact that the r^2 values for these fits are negligible.

Table 4 describes the equivalent linear relationships between seasonal surface air temperatures and seasonal sea ice extents, according to the non-calibrated pre-satellite era datasets, during the pre-satellite era, i.e., 1901-1978 (or 1940s-1978 in the case of some of the Russian datasets). Unlike the satellite era results in Table 3, very few of the regions and seasons imply a strong relationship between surface air temperatures and ice extents, and whenever they do, the relationships tend to be much weaker (e.g., smaller slopes and r^2 values).

This breakdown in the apparent temperature-sea ice relationship for the pre-satellite estimates has been noted by others (e.g., Semenov and Latif, 2012; Parker and Ollier, 2015). For instance, Semenov and Latif (2012) argued that the winter sea ice extent variability implied by the Walsh dataset is much less than would be expected from the observed temperature trends. Parker and Ollier (2015) also noted that the pre-1953 Walsh dataset does not seem to demonstrate the sea ice variability implied by Arctic temperature trends, although their claim that the Walsh dataset conflicts with the Danish Meteorological Institute’s 1901-1956 sea ice charts is debateable since, as discussed in Section 3.3, Kelly (1979)’s digitisation of those sea ice charts was actually the primary data source for the pre-1953 Walsh dataset.

We argue that this apparent breakdown (or at least weakening) in the relationships between sea ice and temperature before the satellite era is not genuine, but rather a consequence of the poorer quality of the pre-satellite sea ice extent estimates. Indeed, the current climate models assume a strong relationship holds between sea ice and temperature (e.g., Kauker et al., 2008). Hence, we recalibrated the regional sea ice extent estimates so that they have a more consistent relationship to regional temperatures over the entire 1901-2015 period.
Table 3. Linear least square regression fits between seasonal sea ice extent (y, km²) and temperature anomalies (x, °C) for the three Arctic regions during the satellite era, i.e., 1979-2015. Fits that are significant to >95% (i.e., p<0.05) are highlighted in bold.

<table>
<thead>
<tr>
<th>Season</th>
<th>Equation Of Line</th>
<th>r²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>North American Arctic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>y = -28 000 x + 5 788 000</td>
<td>0.28</td>
<td><0.001</td>
</tr>
<tr>
<td>Spring</td>
<td>y = -17 000 x + 5 702 000</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>y = -408 000 x + 3 595 000</td>
<td>0.52</td>
<td><0.001</td>
</tr>
<tr>
<td>Autumn</td>
<td>y = -129 000 x + 5 441 000</td>
<td>0.55</td>
<td><0.001</td>
</tr>
<tr>
<td>Annual</td>
<td>y = -123 000 x + 5 153 000</td>
<td>0.58</td>
<td><0.001</td>
</tr>
<tr>
<td>Nordic Arctic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>y = -182 000 x + 2 702 000</td>
<td>0.49</td>
<td><0.001</td>
</tr>
<tr>
<td>Spring</td>
<td>y = -302 000 x + 2 591 000</td>
<td>0.62</td>
<td><0.001</td>
</tr>
<tr>
<td>Summer</td>
<td>y = -164 000 x + 1 404 000</td>
<td>0.36</td>
<td><0.001</td>
</tr>
<tr>
<td>Autumn</td>
<td>y = -206 000 x + 2 139 000</td>
<td>0.59</td>
<td><0.001</td>
</tr>
<tr>
<td>Annual</td>
<td>y = -247 000 x + 2 233 000</td>
<td>0.64</td>
<td><0.001</td>
</tr>
<tr>
<td>Siberian Arctic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>y = -100 x + 4 459 000</td>
<td>0.00</td>
<td>0.77</td>
</tr>
<tr>
<td>Spring</td>
<td>y = -600 x + 4 458 000</td>
<td>0.01</td>
<td>0.67</td>
</tr>
<tr>
<td>Summer</td>
<td>y = -486 000 x + 3 616 000</td>
<td>0.40</td>
<td><0.001</td>
</tr>
<tr>
<td>Autumn</td>
<td>y = -23 000 x + 4 442 000</td>
<td>0.19</td>
<td>0.005</td>
</tr>
<tr>
<td>Annual</td>
<td>y = -110 000 x + 4 276 000</td>
<td>0.54</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 4. Linear least square regression fits between seasonal sea ice extent (y, km²) and temperature anomalies (x, °C) for the three Arctic regions during the pre-satellite era, i.e., 1901-1978. Fits that are significant to >95% (i.e., p<0.05) are highlighted in bold.

<table>
<thead>
<tr>
<th>Season</th>
<th>Equation Of Line</th>
<th>r²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>North American Arctic (Walsh dataset)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>y = -4 000 x + 6 192 000</td>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td>Spring</td>
<td>y = -9 000 x + 6 146 000</td>
<td>0.02</td>
<td>0.25</td>
</tr>
<tr>
<td>Summer</td>
<td>y = -117 000 x + 4 246 000</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Autumn</td>
<td>y = -1 000 x + 6 047 000</td>
<td>0.00</td>
<td>0.79</td>
</tr>
<tr>
<td>Annual</td>
<td>y = -26 000 x + 5 660 000</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>Nordic Arctic (Walsh dataset)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>y = -57 000 x + 3 001 000</td>
<td>0.19</td>
<td><0.001</td>
</tr>
<tr>
<td>Spring</td>
<td>y = -124 000 x + 2 970 000</td>
<td>0.13</td>
<td><0.001</td>
</tr>
<tr>
<td>Summer</td>
<td>y = -201 000 x + 1 845 000</td>
<td>0.16</td>
<td><0.001</td>
</tr>
<tr>
<td>Autumn</td>
<td>y = -51 000 x + 2 590 000</td>
<td>0.13</td>
<td><0.001</td>
</tr>
<tr>
<td>Annual</td>
<td>y = -122 000 x + 2 605 000</td>
<td>0.24</td>
<td><0.001</td>
</tr>
<tr>
<td>Siberian Arctic (Walsh dataset)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>y = 4 581 000, i.e., constant</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Spring</td>
<td>y = -200 x + 4 581 000</td>
<td>0.02</td>
<td>0.24</td>
</tr>
<tr>
<td>Summer</td>
<td>y = -93 000 x + 4 138 000</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Autumn</td>
<td>y = 4 581 000, i.e., constant</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Annual</td>
<td>y = -7 000 x + 4 470 000</td>
<td>0.01</td>
<td>0.41</td>
</tr>
<tr>
<td>Siberian Arctic (Russian datasets)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>y = -11 000 x + 4 152 000 (over 1940-1978 period)</td>
<td>0.04</td>
<td>0.22</td>
</tr>
<tr>
<td>Spring</td>
<td>y = -29 000 x + 4 073 000 (over 1940-1978 period)</td>
<td>0.15</td>
<td>0.01</td>
</tr>
<tr>
<td>Summer</td>
<td>y = -97 000 x + 3 455 000 (over 1900-1978 period)</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Autumn</td>
<td>y = +16 000 x + 3 715 000 (over 1943-1978 period)</td>
<td>0.01</td>
<td>0.59</td>
</tr>
<tr>
<td>Annual</td>
<td>y = -44 000 x + 3 827 000 (over 1943-1978 period)</td>
<td>0.09</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Fig. 6 illustrates the seven-step procedure we used to construct our Arctic sea ice extent reconstructions for each season and region, using North American Arctic summer as a case study. In the rest of this section, we will provide a discussion of the data for each of our three Arctic regions (i.e., North American, Nordic and Siberian). In the Supplementary Information, we include additional statistical analysis of the residuals from the linear fits in Step 4, including an assessment of the corresponding Durbin-Watson statistics.

Step 1. Compile all available rural weather stations with temperature records for appropriate region (here, North American Arctic) and season (here, July to September, i.e., Summer).

Step 2. Construct gridded surface air temperature trends for that region and season. Error bars represent twice the standard error of the mean, i.e., the “confidence interval” (CI) and tend to be largest when the station numbers are lowest and/or when disagreement between stations is greatest.

Step 3. Calculate the mean sea ice extents for that season and region using satellite observations for the satellite era, i.e., 1979 – present.

Step 4. Calculate the best-fit linear relationship between mean surface air temperature trends and sea ice extent for that region and season over the satellite era, using linear least squares fitting of the datasets in steps 2 and 3.

Step 5. Apply the above linear relationship to the surface air temperature reconstruction from step 2 to generate a temperature-derived sea ice extent proxy for 1901 – present. This step is applied separately to the mean, upper bound and lower bound to generate equivalent confidence intervals for the proxy dataset.

Step 6. Calculate the mean sea ice extents estimated from the available pre-satellite dataset for that season and region. Group the estimates into separate periods according to the underlying data sources used. Note for our analysis, we use the satellite-derived estimates for the post-1979 satellite era.

Step 7. Separately rescale the estimates for each of the periods so that their means and standard deviations are the same as for the temperature-derived proxies. The confidence intervals of the temperature-derived proxies are used as an estimate of the associated uncertainty of the final reconstruction. For periods when the pre-satellite estimates are missing data (or are just climatology estimates), the temperature-derived proxies are used directly.

4.1 North American Arctic

For the pre-satellite era (1901-1978), we used the gridded Walsh dataset (version 1). However, as discussed in Section 3.3, the sources used for the Walsh dataset are different for different periods:

- **1901-1939:** DMI sea ice charts for summer & spring; DMI’s ship reports for winter; fixed climatology for autumn.
- **1940-1945:** Fixed climatology since data was sparse during World War 2
- **1946-1952:** As for 1901-1939, but with a greater and more consistent observation network
• 1953-1971: Sea ice charts from multiple sources (US Navy, British Meteorological Office, Canadian Meteorological Service, DMI)
• 1972-1978: NIC’s sea ice charts
• 1979-2015: Satellite data

In particular, the data available for the pre-1953 period is quite limited. Moreover, it can be seen from Fig. 7 that from 1940-1945 (i.e., during World War 2), the Walsh dataset just provides a constant climatology and does not provide any estimates of trends during this period. The Walsh dataset does not contain much data for the pre-1952 autumn, and so most of these autumn estimates are also just climatology values.

Fig. 7. (a) The mean sea ice extents, and station locations for the North American Arctic region. (b-e) North American Arctic sea ice extent trends before and after rescaling for each season: (b) Winter; (c) Spring; (d) Summer; (e) Autumn. Note that the y-axes are different for each season.
Following the procedure in Fig. 6, in an attempt to correct for these changes in data sources, we separately rescaled the estimates from the Walsh dataset in each of the different periods (1901-1939; 1946-1952; 1953-1971; and 1972-1978) so that the means and standard deviations over that period were the same as the equivalent periods for our temperature-based sea ice extent proxy.

For the missing 1940-1945 period (and the longer missing period for autumn, i.e., 1901-1952), we replaced the constant Walsh climatology values with our temperature-based proxy estimates directly. For the satellite era (1979-2015), we used the more comprehensive estimates determined from the satellite data (Section 3.2). However, the standard deviations of the satellite dataset are larger than our temperature-based proxy for the 1979-2015. Therefore, in order to maintain consistency between the pre- and post-satellite eras, we also rescaled the satellite estimates to have the same means and standard deviations for this period.

The seasonal trends from the various estimates before and after rescaling are shown in Fig. 7. As described in Fig. 6, the uncertainty bands associated with our rescaled estimates are derived from the confidence intervals of the temperature-based sea ice proxies. A consequence of this is that the associated error bars for our rescaled regional datasets tend to be smallest when there are a large number of weather stations and greatest when the number of weather stations is low. As can be seen from Fig. 3 (d), for the North American Arctic (and also the Nordic Arctic), the number of weather stations is greatest during the period 1951-1990. Hence, the associated error bars for our reconstruction are larger both before 1951 and after 1990.

4.2 Nordic Arctic

The data sources and procedure for rescaling the Nordic Arctic estimates were basically the same as for the North American Arctic, and we will therefore limit the discussion of this region to avoid repetition. The seasonal trends from the various estimates before and after rescaling are shown in Fig. 8. The main differences between the Nordic and North American Arctic reconstructions are that:

- There is considerable variability in Nordic Arctic sea ice extents for all four seasons, while for the North American Arctic it is much greater for the summer and much lower for the spring.
- For the pre-satellite era, the Walsh dataset generally had more observations for the Nordic Arctic than for the North American Arctic.

As for the North American Arctic region, for the pre-1953 portion of the Walsh dataset, the autumn values are essentially just climatology values. Therefore, as discussed in Fig. 6, we replaced this period directly with our temperature-based proxy. However, for the winter values, although the Walsh dataset nominally implies some variability, it can be seen from Fig. 8(b) that there is almost no variability in the dataset pre-1953 compared with the post-1953 period. This suggests that the Walsh dataset estimates for the pre-1953 winter values are also little more than climatology estimates. Therefore, it could be argued that it might be more realistic to treat them in the same way as the autumn estimates. However, since the Walsh dataset included some slight variability, we cautiously treated this period of their estimates as non-climatology (except for the 1940-1945 period).
Fig. 8. (a) The mean sea ice extents, and station locations for the Nordic Arctic region. (b-e) Nordic Arctic sea ice extent trends before and after rescaling for each season: (b) Winter; (c) Spring; (d) Summer; (e) Autumn. Note that the y-axes are different for each season.

4.3 Siberian Arctic

As discussed in Section 3.4, the version of the Walsh dataset we used contained almost no observations for the Siberian Arctic region before the satellite era. On the other hand, the Russian-based AARI group have compiled several datasets of pre-satellite era observations for the Siberian Arctic (Zakharov, 1997; Arctic and Antarctic Research Institute, 2007; Mahoney, 2008; Mahoney et al., 2008; Frolov et al., 2009). Hence, for the Siberian Arctic region, we used the Russian sea ice datasets for the pre-satellite era instead of the Walsh dataset. Below are the different sources for the Siberian Arctic reconstruction:
• 1901-1932: No estimates for most seasons, but Frolov et al. (2009) have developed a rough estimate of August trends using a variety of sources including descriptions of early Arctic voyages and other observations. We used this as a proxy for summer trends

• 1933-1952: Systematic aircraft reconnaissance 1-3 times per month with some additional ship and coastal observations

• 1953-1971: As for 1933-1952, but with improved frequency and coverage, as well as additional observations from a network of drifting buoys, and beginning in the late 1960s, some early satellite observations

• 1972-1978: As for 1953-1971, but with improved satellite technology

• 1979-2015: NSIDC’s satellite data

The seasonal trends from the various estimates before and after rescaling are shown in Fig. 9. We also show the equivalent non-rescaled estimates from the original Walsh dataset. Although there is some variability in Siberian Arctic summer sea ice extent implied by the Walsh dataset for the pre-satellite era, it is very inconsistent and modest compared with the satellite-era estimates. Apparently the latest version of the Walsh dataset will incorporate the AARI’s datasets (Walsh et al., 2015; Walsh et al., 2017). So, this particular limitation of the earlier Walsh datasets (and related datasets such as HadISST) should no longer be a problem for analysis based on the newer version.

Interestingly, the AARI datasets actually imply there has been quite a bit of variability in the winter, spring and autumn seasons for the pre-satellite era. However, as discussed earlier, satellite observations imply the Siberian Arctic remains mostly ice-packed for the winter and spring, and that autumn variability is quite modest. Therefore, unlike with the other two regions, our rescaling for these seasons considerably reduces the implied variability for the pre-satellite era. Finally, it is worth noting from Fig. 3(d) that the number of Siberian Arctic weather stations in our temperature dataset dropped rather dramatically after 1990. As a result, there is a bit of an increase in the uncertainty of our Siberian summer reconstructions after 1990, since our confidence intervals are derived from our temperature-based proxies.
Fig. 9. (a) The mean sea ice extents, and station locations for the Siberian Arctic region. (b-f) Siberian Arctic sea ice extent trends before and after rescaling for each season. Two different rescaled estimates for summer trends are provided, i.e., (d) and (e). (b) Winter; (c) Spring; (d) Summer using Mahoney, 2008 dataset; (e) Summer using Frolov et al., 2009 dataset; (f) Autumn. Note that the y-axes are different for each season.
5 ARCTIC SEA ICE EXTENT TRENDS (1901-2015)

Fig. 10 sums together the seasonal reconstructions from the three Arctic regions described in the previous section to yield seasonal reconstructions for the entire Arctic region. Fig. 10(e) plots the annual reconstruction, which is simply the average of the four seasons. The plots labelled “non-rescaled” correspond to the equivalent estimates calculated from the Walsh dataset for the pre-satellite era and NSIDC’s satellite for the satellite era.

![All-Arctic seasonal and annual trends](image)

For all seasons and the annual average, we can see that the average sea ice extent has been generally decreasing since the late-1970s, which agrees with the analysis of those studies which only considered the satellite era (e.g., Comiso et al., 2008; Cavalieri and Parkinson, 2012; Meier et al., 2014). However, it appears that the late-1970s coincided with a reversal in trends. From the mid-1940s until the late 1970s, the average sea
ice extent was generally increasing instead. Before the 1940s, the trends are less clear, e.g., while summer extents seem to have been generally increasing from the start of the century until the 1940s, the opposite seems to have been occurring for autumn extents. Nonetheless, it is clear that the general decline in Arctic sea ice extent during the satellite era is less dramatic when considered in the context of the entire 1901-2015 record.

Fig. 11. Comparison of our All-Arctic summer sea ice extent reconstruction with several other estimates in the literature: (a) Walsh dataset-derived summer extents; (b) Pirón & Pasalodos, 2016 September extents; (c) Alekseev et al., 2016 September extents; (d) CMIP5 modelled September extents; (e) Our summer reconstruction.

A lot of the discussion of Arctic sea ice trends has focused on the summer trends – in particular those during the month of September (i.e., the peak of Arctic summer). In Fig. 11, we compare our summer Arctic reconstruction Fig. 11(e) with several other reconstructions Fig. 11(a)-(d) that have been discussed in the literature.

Fig. 11(a) shows the equivalent estimate from the Walsh dataset. Although our reconstruction agrees that the average Arctic summer sea ice extents have been decreasing since the late-1970s, the non-rescaled Walsh dataset estimates suggest that sea ice extents were fairly constant during the pre-satellite era, fluctuating about a mean summer sea ice extent of ~10 million km². However, our reconstruction implies much more variability during the pre-satellite era. In particular, the post-1970s decrease seems to have followed a period of generally increasing extents since the mid-1940s.

Fig. 11(b) and (c) show the September reconstructions of Pirón & Pasalodos (2016) and Alekseev et al. (2016) respectively. As we saw from Fig. 2, mid-September marks the peak of the Arctic summer and so we would expect September sea ice extents to be generally lower than the summer averages, and the Pirón & Pasalodos (2016) reconstruction consistently is so. The Alekseev et al. (2016) reconstruction was provided to us (personal communication) as a relative anomaly index instead of absolute values. Therefore, for comparison with our reconstruction, we added a value of 6.37 million km² to all of the anomaly indices so that the mean September ice extent for the Pirón & Pasalodos (2016) and Alekseev et al. (2016) reconstructions were the same over the 1980-2013 period.
As the Pirón & Pasalodos (2016) and Alekseev et al. (2016) reconstructions are monthly averages while our reconstruction is a seasonal average, we might expect that our summer reconstruction could show less variability than the two September reconstructions. Nonetheless, the long-term trends of these two reconstructions seem closer to our summer reconstruction than to the Walsh summer reconstruction, e.g., they both indicate Arctic sea ice growth from the 1940s up to the late-1970s.

Like our reconstruction, the Pirón & Pasalodos (2016) availed of the Russian sea ice datasets (Section 3.4) for the Siberian Arctic region, while the original Walsh dataset did not. So, this could explain the better fit to our reconstruction. Meanwhile, the Alekseev et al. (2016) reconstruction was a temperature-based proxy for sea ice extents. As described in Fig. 6, we used similar temperature-based proxies for recalibrating our data sources. So, it is perhaps not too surprising that they should imply similar trends.

However, there are some notable differences between our summer reconstruction and the Pirón & Pasalodos (2016) and Alekseev et al. (2016) September reconstructions. While the trends of our summer reconstruction and the Pirón & Pasalodos (2016) September reconstruction seem to track each other quite well from the start of the Pirón & Pasalodos reconstruction in 1935 until the 1990s, after this time, the Pirón & Pasalodos reconstruction suggests a more dramatic decline in sea ice extent. As a result, according to the Pirón & Pasalodos reconstruction, the low sea ice extents since the late-1990s appear unprecedented (at least over the period considered by the reconstruction). On the other hand, the Alekseev et al. (2016) reconstruction implies a greater decline in sea ice extent during the early 20th century and a greater increase in sea ice extent from the 1940s until the 1970s than our reconstruction. As a result, according to the Alekseev et al. (2016) reconstruction, the relatively low sea ice extents of the last decade or so were actually comparable to those in the 1930s.

We will consider this contentious issue of how recent Arctic sea ice extents compare to those during the pre-satellite era in more detail below. However, in Fig. 11(d), we plot the September Arctic sea ice extent “hindcasts”3 of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models, i.e., the climate models used for the most recent Intergovernmental Panel on Climate Change (IPCC) reports.

Fig. 11(d) plots both the mean and median hindcasts from 36 CMIP5 models (with an average of ~2.5 ensemble members per model) which were obtained by digitising Figure 3 of Overland and Wang (2013). We use these two plots to represent the trends of the CMIP5 hindcasts rather than (for instance) the upper and lower envelopes of the CMIP5 hindcasts because there is a remarkable inconsistency between CMIP5 models in the modelled September Arctic sea ice extent. That is, the average 20th century extents predicted by each of the models varied from an unrealistically low ~4 million km² to unrealistically high ~12 million km² – see Figure 3 of Overland and Wang (2013) or the comparable Figure 2 of Stroeve et al. (2012). As a result, the collective envelope of the entire ensemble of CMIP5 models covers such an unrealistically large range of “average extents” that it would nominally “contain” almost any physically plausible scenario for sea ice extent trends since 1901. In other words, the collective envelope is effectively too wide to provide much scientific information other than the fact that the CMIP5 models have considerable difficulty in reproducing the expected September Arctic sea ice extent.

Despite that, the fact that the mean and median CMIP5 hindcasts are so similar to each other indicates that the hindcasted trends in sea ice extents (as opposed to absolute values) are remarkably similar for all 36 models. With this in mind, it is striking that they fail to capture almost any of the variability over the pre-satellite era shown by our summer reconstruction. Specifically, the CMIP5 hindcasts imply that September Arctic sea ice extent remained fairly constant for most of the 20th century up until the late-1970s/early-1980s after which the September extent began to decrease at an accelerating rate.

Fig. 12 shows an expanded version of our annual all-Arctic sea ice extent reconstruction, i.e., the main plot from Fig. 10(e). If we temporarily exclude the confidence intervals and focus on the reconstruction means (i.e., the thick central line), then it seems that up until 2005, the lowest average Arctic sea ice extent was in 1943, but that every year since 2004 has been lower than that 1943 minimum (i.e., the red-dashed line). Indeed,

3 A “hindcast” is like a forecast except that it is a retrospective “prediction” of what should have occurred in the past, rather than what is expected to occur in the future.
Overland et al. (2012; 2015) have suggested that recent years may have seen a persistent shift in Arctic atmospheric circulation which could be consistent with a shift to relatively low Arctic sea ice extents.

However, if we also consider the full envelope of the associated confidence intervals, we cannot rule out the possibility that similarly low sea ice extents occurred during the 20th century. That is, the upper bounds of the estimates for all years since 2004 are still greater than the lower bounds for several years in the early 20th century.

![Comparison of annual Arctic sea ice extent trends during the pre-satellite era with the satellite era. Periods of general sea ice growth and periods of general sea ice melt are indicated at the bottom of the figure.](image)

6 CONCLUSIONS

In this article, we developed and presented a new dataset describing seasonal and annual Arctic sea ice extents for the period 1901-2015. Our dataset consists of separate seasonal indices for three Arctic regions (North American, Nordic and Siberian) as well as composite indices for the entire Arctic Ocean and seas, although excluding those non-Arctic Northern Hemisphere seas with seasonal sea ice (e.g., Sea of Okhotsk, Bering Sea, Gulf of St. Lawrence).

According to this new dataset, the recent period of Arctic sea ice retreat since the 1970s followed a period of sea ice growth since the mid-1940s, which in turn followed a period of sea ice retreat since the 1910s. Our reconstructions agree with previous studies which have noted a general decrease in Arctic sea ice extent (for all four seasons) since the start of the satellite era (i.e., 1979). However, the timing of the start of the satellite era is unfortunate in that it coincided with the end of several decades during which Arctic sea ice extent was generally increasing.

This late-1970s reversal in sea ice trends was not captured by the hindcasts of the recent CMIP5 climate models used for the latest IPCC reports, which suggests that current climate models are still quite poor at modelling past sea ice trends. Nor is it described in previous Arctic sea ice reconstructions such as the Walsh dataset or the widely-used HadISST sea ice dataset - although some recent studies have noted similar reversals, e.g., Pirón & Pasalodos (2016) and Alekseev et al. (2016).

As we saw from Fig. 1, Table 1 and Table 2, Arctic sea ice is a key component of the Arctic hydrological cycle. So, this new dataset should be of use for improving our understanding of Arctic hydrology.

Acknowledgements We thank Prof. Genrikh Alekseev of the Arctic and Antarctic Research Institute for providing the Alekseev et al., 2016 September sea ice extent estimates used in Fig. 11. We would also like to thank the editor and reviewers for their constructive comments.

All of the research in this collaborative paper was carried out during the authors’ free time and at their own expense. None of the authors received any funding for this research.

REFERENCES

