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ABSTRACT 
Most estimates of Chinese regional Surface Air Temperatures since the late-19th century have identified two relatively 

warm periods – 1920s-40s and 1990s-present. However, there is considerable debate over how the two periods compare to 
each other. Some argue the current warm period is much warmer than the earlier warm period. Others argue the earlier 
warm period was comparable to the present. In this collaborative paper, including authors from both camps, the reasons for 
this ongoing debate are discussed. Several different estimates of Chinese temperature trends, both new and previously 
published, are considered. A study of the effects of urbanization bias on Chinese temperature trends was carried out using 
the new updated version of the Global Historical Climatology Network (GHCN) – version 4 (currently in beta production). 
It is shown that there are relatively few rural stations with long records, but urbanization bias artificially makes the early 
warm period seem colder and the recent warm period seem warmer. However, current homogenization approaches (which 
attempt to reduce non-climatic biases) also tend to have similar effects, making it unclear whether reducing or increasing the 
relative warmth of each period is most appropriate. A sample of 17 Chinese temperature proxy series (12 regional and 5 
national) is compared and contrasted specifically for the period since the 19th century.  Most proxy series imply a warm 
early-20th century period and a warm recent period, but the relative warmth of these two periods differs between proxies. 
Also, with some proxies, one or other of the warm periods is absent. 
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1. Introduction 
Over the last two decades, there have been several 

different attempts to estimate regional Surface Air 
Temperature (SAT) trends for China since the start of the 
20th century (or earlier) (Wang S. et al., 2001, 2004; Tang & 
Ren, 2005; Tang et al., 2010; Ren et al., 2012, 2017; Cao et 
al., 2013; Ding et al., 2014; Wang J. F. et al., 2014; Soon et 
al., 2015; Li et al., 2017). All of these estimates identify two 
relatively warm periods (1920s-40s and 1990s-present) 
separated by a relatively cool period (1950s-70s). However, 
there has been considerable debate over how these two 
warm periods compare to each other.  

Recently, Li et al. (2017) found that the early 20th 
century warm period (1920s-40s) only involved a relatively 
modest warming and that the current warm period is the 
hottest on record by a substantial amount. This agreed with 
the earlier studies by Cao et al. (2013) and Wang J. F. et al. 
(2014), as well as some temperature proxy-based studies, 
e.g., (Ding et al., 2016; Liu et al., 2017; Zheng et al., 2017). 

On the other hand, several studies have suggested that 
both warm periods have been comparable, albeit with the 
current warm period being warmer on average (Wang S. et 
al., 2001, 2004; Tang & Ren, 2005; Tang et al., 2010; Ren 
et al., 2012, 2017; Ding et al., 2014). Meanwhile, Soon et 
al. (2015) came to the opposite conclusion of Li et al. 
(2017) and found that the early 20th century warm period 
was the hottest on record for China. 

In this collaborative paper, each of us has different 
views on this contentious issue. Specifically, while some of 
us have argued that the early 20th century warm period was 
comparable to the recent warm period for China (e.g., Soon 
et al., 2011; Soon et al., 2015), some of us have argued that 
the recent warm period is much warmer (e.g., Ding et al., 
2016; Liu et al., 2017; Zheng et al., 2017). Therefore, we 
believe it is important to establish and assess the reasons for 
these differing views. 

Several challenging, inter-related factors seem to be 
involved: 
1. There are relatively few Chinese stations with 

temperature records beginning before 1954, i.e., the 
period during which the early 20th century warm period 
occurred. 

2. Moreover, the methods by which daily temperatures 
were estimated are especially poorly documented for 
the earlier periods, e.g., instruments used, times-of-
observation. Therefore, it is plausible that changes in 
these methods may have introduced non-climatic biases 
into the estimates of the warmth of the earlier period. 

3. On the other hand, there is considerable evidence that, 
in recent decades, many instrumental records in China 
have been affected by warming biases caused by 
urbanization. So, urbanization bias may have 
artificially inflated the apparent warmth of the recent 
period. This would also have the effect of artificially 
decreasing the relative warmth of the early period. 
However, determining the magnitude of this effect has 
been quite contentious. Some argue that it has only had 
a very small or negligible effect (Li et al., 2004, 2010a, 
2017; Jones et al., 1990; Yan et al., 2016; Wang J. & 
Yan, 2016; Wang J. et al., 2017). Others argued it has 



3 

had a substantial effect (Soon et al., 2015; Ren, 2015; 
Ren et al., 2015, 2017; Sun et al., 2016). 

4. The main homogenization approaches currently applied 
in an attempt to reduce the effects of non-climatic 
biases have a tendency to reduce the warmth of the 
early period and increase the warmth of the recent 
period. This has led several groups to conclude that the 
apparent warmth of the early period is mostly due to 
non-climatic biases, e.g., Li et al. (2017). On the other 
hand, Soon et al. (2015) note that the current 
homogenization approaches lead to “urban blending” 
when applied to a highly urbanized station network. 
That is, the homogenization process “aliases” 
(deGaetano, 2006; Pielke et al., 2007a) a fraction of the 
urbanization bias of urban neighbours onto the records 
of less urbanized station. This blending problem would 
have a tendency to artificially increase the warmth of 
the recent period and decrease the warmth of the early 
period. 

5. A somewhat independent approach to estimating the 
relative warmth of the two periods could be to use 
temperature proxies, such as tree rings and ice cores 
(Wang S. et al., 2001, 2004; Ding et al., 2016; Liu et 
al., 2017; Zheng et al., 2017). Most temperature proxies 
for China agree that the 20th and 21st centuries are 
relatively warm compared with the 18th and 19th 
centuries, and usually identify both a warm early-20th 
century period and a warm recent period. However, the 
relative warmth of these two periods differs between 
proxies. 
In this paper, we provide a review of the above 

challenges. We also compare and contrast the early and 
recent warm periods for each of the different Chinese 
temperature trend estimates. Additionally, we present new 
estimates derived from the updated Global Historical 
Climatology Network temperature dataset (Lawrimore et 
al., 2011). The latest updates to this dataset (version 4, 
currently in beta production) have substantially increased 
the amount of publicly archived temperature records for 
China for both the recent warm period and the early 20th 
century warm period. The first assessments of the 
magnitude of urbanization bias for China in this new dataset 
are also carried out. Finally, we present a new compilation 
of various different proxy reconstructions representative of 
three regions in China (central China, northeast China and 
the Tibetan Plateau) as well as five multiproxy 
reconstructions for all of China. Previous assessments of the 
temperature proxy data have tended to primarily focus on 
the points of agreement between individual series. 

However, given the complexity of the debate described in 
the rest of the paper, we believe it is important to both 
compare and contrast the similarities and differences of the 
proxy data for the post-19th century period.  

2. Data sources and methodology 

2.1. Previous regional Chinese temperature 
reconstructions using meteorological records 

In this paper, we will consider several different 
previously-published estimates of Chinese temperature 
trends, derived from meteorological records. Many of these 
estimates are constructed from similar data sources, and 
hence, they are not entirely independent. However, each of 
the estimates has taken a slightly different approach to using 
this data, and there are also some differences in the data 
sources. 

A brief overview of each of these estimates is given 
below: 
• Wang et al. (2004). Wang S. et al. (2001, 2004) 

divided the country into ten different regions. They 
then used a combination of raw station records, annual 
regional climatologies and some temperature proxy 
records to construct temperature series for each of the 
ten regions. These regional series were then averaged to 
yield a single time series for all of China covering the 
period 1880-2002. Recently, Ren et al. (2017) updated 
this series to 2015, and we obtained the updated series 
by digitizing Figure 1 of Ren et al. (2017). Wang et al. 
(2001, 2007) have also extended this series back in 
time using temperature proxies – see Section 2.5. 

• Tang & Ren (2005). Tang & Ren (2005) noted that 
there was no unified observation time for China before 
1950, and that inconsistencies in observation times 
could have introduced non-climatic biases into station 
records. In an attempt to reduce the magnitude of these 
Time of Observation Biases (TOB), they averaged 
together the records for monthly maximum 
temperatures and monthly minimum temperatures from 
616 stations, instead of using the monthly mean 
averages. Their original series spanned the period 
1905-2001, but this series has since been updated by 
both Tang et al. (2010) and more recently Ren et al. 
(2017). We obtained this series by digitizing Figure 1 
of Ren et al. (2017). 

• China Climate Change Monitoring Bulletin, 2014. In 
2014, the China Meteorological Agency published an 
estimate of Chinese temperature trends for 1901-2013. 
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We obtained this series by digitizing Figure 1 of Ding 
et al. (2014). 

• Soon et al. (2015) “mostly rural composite”. Soon et 
al. (2015) analysed all 417 Chinese stations in version 3 
of the Global Historical Climatology Network (GHCN) 
dataset. Soon et al. noted that only 30% of these 
stations are still rural, and that these rural stations had 
relatively short and incomplete station records. During 
the 1951-1990 period (when all stations had relatively 
complete station records), a strong urbanization bias 
was apparent in the non-rural station records in that the 
temperature trend increased from +0.025°C/decade for 
the rural subset to +0.088°C/decade for the moderately 
urbanized subset +0.119°C/decade for the most heavily 
urbanized subset. This suggested that ~86% of the 
warming trend of the full dataset (+0.109°C/decade) for 
this period was urbanization bias. Similar results were 
obtained whether using the raw GHCN dataset or the 
homogenized dataset, indicating that homogenization 
had failed to remove this urbanization bias. Moreover, 
outside this period, they found indications that the 
(automated) homogenization process had introduced 
“urban blending” into the homogenized dataset, i.e., 
warming trends had been artificially inserted into the 
(relatively rare) rural station records so that their trends 
better matched those of their more numerous urban 
neighbours. For these reasons, Soon et al. intentionally 
used the non-homogenized dataset and preferentially 
used rural station records to minimise the effects of 
urbanization bias. For the 1951-1990 period, their 
reconstruction only used rural stations. However, 
because very few of the rural stations had data outside 
this period, for the 1907-1950 and 1991-2014 periods, 
they were only able to remove the most heavily 
urbanized subset and therefore included some stations 
that were moderately urbanized. All of the stations with 
data before 1907 were in the most heavily urbanized 
subset, but it was argued that most of the urbanization 
bias in these records has probably occurred in more 
recent decades. Therefore, to extend the length of their 
reconstruction, for the 1841-1906 period they included 
all available stations, regardless of how urbanized they 
were. 

• Li & Xu (adjusted). Li et al. (2017) reached different 
conclusions from Soon et al. (2015) and therefore used 
a different approach for constructing their series. Li et 
al. estimated that the average magnitude of 
urbanization bias in their homogenized dataset is quite 
small (Li et al., 2004, 2010a; Jones et al., 2008; Xu et 

al., 2017). They therefore did not attempt to explicitly 
remove any urbanization bias. They also argued that the 
homogenization process should have reduced the 
magnitude of other non-climatic biases, e.g., station 
moves, changes in instrumentation. They also applied 
Tang & Ren (2005)’s approach of averaging together 
the separate maximum and minimum monthly series to 
try to reduce Time of Observation Biases. The Li & Xu 
(adjusted) series therefore is the homogenized regional 
series of Li et al. (2010) and Xu et al. (2013), updated 
by Li et al. (2017) to cover the period 1900-2015. 

• Li & Xu (raw). For comparison, Li et al. (2017) also 
repeated their analysis using the non-homogenized 
version of their dataset. Both of the Li & Xu series 
were provided by personal communication with Li. 
Many of the time series studied in this paper were 

calculated using different baseline periods, e.g., 1961-1990, 
1971-2000, etc. Therefore, to allow direct inter-comparisons 
between time series, for the purposes of this paper, all of the 
above series were rescaled into temperature anomalies 
relative to the same baseline period, 1901-2000. 
 

2.2. Data for new Chinese temperature 
reconstructions 

As discussed above, Soon et al. (2015) developed a 
“mostly rural composite” of Chinese temperatures since 
1841 using version 3 of the Global Historical Climatology 
Network (GHCN) dataset. One limitation of this dataset was 
that more than 80% of the 417 Chinese station records 
finished in 1990 (particularly rural stations). However, in 
recent years, there have been considerable efforts to 
recover, digitize and compile more temperature records, 
especially for the early 20th century, e.g., Williamson et al. 
(2017). In particular, the International Surface Temperature 
Initiative (ISTI) project (Rennie et al., 2014) and the 
updates to the Global Historical Climatology Network daily 
dataset (Menne et al., 2012) have substantially increased the 
amount of publicly archived temperature data – both 
globally and specifically for China.  

At any rate, version 4 of the GHCN dataset (in beta 
version, at the time of writing) has updated many of these 
stations to include post-1990 data and also includes some 
additional stations. This new dataset is mostly based on the 
recent International Surface Temperature Initiative (ISTI) 
dataset – see Rennie et al. (2014), but also incorporates new 
data from the updated “daily” version of the GHCN (Menne 
et al., 2012) and various other sources. In total there are 494 
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Chinese stations, and nearly 75% of these stations have at 
least some post-1990 data. 

Therefore, it is worth repeating the Soon et al. (2015) 
analysis using version 4 of the GHCN dataset. However, 
while version 3 of the GHCN data provides two different 
estimates of how urbanized each of the stations is (one 
based on population and the other based on night light 
brightness), there is no such information for version 4.  

With that in mind, we have estimated how urbanized 
each of the stations is by comparing the station co-ordinates 
to two different maps estimating urbanization: 

1. The average population density associated with 
the station location  

2. The average night brightness associated with the 
station location  

To estimate the average population densities, we used 
the “Gridded Population of the World” (GPW) version 4 
dataset2. To estimate the average night brightnesses, we 
used the “Global Radiance Calibrated Nighttime Lights for 
2006” dataset3. The average values for each station location 
were determined from the mean average of the nine pixel 
values centred at the station location, of the appropriate 
datasets for both population density and night brightness. 

Establishing which thresholds to use to define whether 
a station is “urban” or not can be somewhat arbitrary. 
Therefore, we simply ranked all the stations from “most 
urban” to “least urban” according to each of the two 
metrics. As can be seen from Figure 1, stations that have a 
particular ranking according to one metric tend to have a 
similar ranking according to the other metric. Therefore, the 
overall ranking for each station is simply the average of the 
two ranks. All of the Chinese stations are then grouped into 
5 equal subsets according to this overall ranking, with 
Subset 1 corresponding to the 20% most urbanized stations 
                                                 
2 Gridded Population of the World, Version 4 
(GPWv4): Population Density Adjusted to Match 2015 
Revision of UN WPP, Year of Estimate: 2015. Downloaded 
on December 5th, 2016 as “gpw-v4-population-density-
adjusted-to-2015-unwpp-country-totals-2015.zip” from 
http://sedac.ciesin.org/data/set/gpw-v4-population-density-
adjusted-to-2015-unwpp-country-totals/data-download 
(NASA EARTHDATA login required) 
3 Global Radiance Calibrated Nighttime Lights for 2006 
dataset was downloaded on March 19th, 2015, from 
http://www.ngdc.noaa.gov/dmsp/download_radcal.html   as 
“F162006.v4.tar”.  Note that as of  August 4th 2017, the 
previous link no longer works, but a different version of this 
dataset appears at a moved website, 
https://www.ngdc.noaa.gov/eog/dmsp/download_radcal.htm
l. 

and Subset 5 corresponding to the 20% least urbanized 
stations – see Figure 1. 

 

 

Figure 1. The night brightness and population densities 
associated with all Chinese stations in the GHCN version 4 
dataset, ranked according to urbanization. The y-axes are both 
shown using log-scale. 

We note that this approach to grouping the stations is 
explicitly based on the degree of urbanization of the current 
location of the stations. However, many of the stations have 
been moved over time, and in particular there has been a 
tendency in China to occasionally move stations that have 
become heavily urbanized to more rural locations (Li et al., 
2017; Ren et al., 2007, 2017; Yan Z.W. et al., 2016; Wang 
J. & Yan, 2016; Yang et al., 2013; Shi T. et al., 2015; Zhang 
L. et al., 2014; Zhang Y. & Ren, 2014). Therefore, this 
approach may identify some stations as being less urban 
than they originally were. A more comprehensive approach 
would be to use station histories (a.k.a. “station metadata”) 
to account for these station moves. The Chinese 
Meteorological Administration (CMA) have internal access 
to station histories for many of their stations, and as will be 
discussed in Section 3.2, they incorporate this information 
into their homogenization procedure. However, such 
information was not available to us, at the time of writing. 

In Section 3, we will use these subsets to study the 
influence of urbanization on estimates of Chinese 
temperature trends for version 4 of the GHCN dataset, and 
also to construct a new “relatively rural composite” 
analogous to that from Soon et al. (2015).  

Because version 4 of the GHCN has increased the 
number of available Chinese stations, and also updated 
many of the station records which had previously finished 
in 1990, it is important to separately investigate what effects 
(if any) the transition between versions 3 and 4 of the 
datasets has on estimates of Chinese temperature trends. 

http://sedac.ciesin.org/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals/data-download
http://sedac.ciesin.org/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals/data-download
http://www.ngdc.noaa.gov/dmsp/download_radcal.html
https://www.ngdc.noaa.gov/eog/dmsp/download_radcal.html
https://www.ngdc.noaa.gov/eog/dmsp/download_radcal.html
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Also, both version 3 and version 4 of the GHCN 
provide two different datasets. The first dataset contains the 
unadjusted raw station records (with some minor quality 
control adjustments), while the second dataset has been 
homogenized using the Menne & Williams (2009) 
automated homogenization algorithm. As will be discussed 
in Section 3.2, there is ongoing debate over whether such 
homogenization procedures improve (Li et al., 2017; Menne 
& Williams, 2009) or reduce (Soon et al., 2015) the 
reliability of the data. There is also debate over whether 
homogenization increases (Ren et al., 2007; Yang et al., 
2013; Shi T. et al., 2015) or decreases (Yan et al., 2016; 
Wang J. & Yan, 2016; Yan Z. W. et al., 2010; Wang J. et 
al., 2013) the apparent magnitude of urbanization biases.  

Therefore, in this paper, to study the effects of (a) 
homogenization vs non-homogenization and (b) switching 
between versions 3 and 4 of the GHCN datasets, we will 
also generate an additional four time series: 

1. GHCN version 3 (raw, i.e., non-homogenized) 
2. GHCN version 3 (homogenized) 
3. GHCN version 4 (raw) 
4. GHCN version 4 (homogenized) 
For these four time series, we will use all available 

Chinese stations in the respective datasets, whether rural or 
urban. For comparison with Soon et al. (2015) [9], we use 
the same datasets for version 3 which were downloaded 
from ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/ on 9th January 
2015. The version 4 datasets were downloaded from the 
same website on 16th February 2017. 

To generate each of the time series described in this 
section, we adopt a similar approach to that in Soon et al. 
(2015), i.e., 
• All station records are converted into temperature 

anomaly records relative to their 1961-1990 average, 
and then assigned into 5° × 5° grid boxes. Stations 
require at least 15 years of complete data for this 1961-
1990 period to be included in the analysis. 

• For each year, the temperature anomaly for each grid 
box is the mean anomaly of all stations with 12 months 
of data for that year, in that grid box. 

• The temperature anomaly for China for that year is 
calculated from the area-weighted average of all grid 
boxes with data. Area-weighting is approximated by 
taking the cosine of the mid-latitude of each grid box. 
Although Soon et al. (2015) did not present error bars 

with their analysis, we include them here as twice the 
standard error of the means. Also, for comparison with the 
other time series, after generating each series, we rescale 

them into temperature anomalies relative to the 1901-2000 
average. 

2.3. CRUTEM3 and CRUTEM4 estimates 
Another widely-used temperature dataset is that of the 

UK-based Climate Research Unit (CRU). Version 3 of this 
dataset (CRUTEM3) was described by Brohan et al. (2006) 
[18], and version 4 (the latest version, CRUTEM4) was 
described by Jones et al. (2012) [19].  

CRUTEM3 has about 160 Chinese stations (for some 
of the stations, the CRUTEM3 inventory file did not include 
country codes, but we manually identified some extra 
stations in the Chinese region using the provided station co-
ordinates), but only 102 of these stations had at least 15 
complete years of data in the 1961-1990 anomaly period. 
Therefore, for our CRUTEM3 analysis, we reduced the 
required number of years in the anomaly period to 5. This 
provided us with 151 stations. 

CRUTEM4 has a much larger number of stations for 
China (703) than CRUTEM3, and 667 of these stations have 
at least 15 complete years of data in the 1961-1990 anomaly 
period. Therefore, for our CRUTEM4, we used the same 
requirement for at least 15 years in the anomaly period, as 
we did for the GHCN dataset. 

We downloaded the CRUTEM3 station data from the 
CRU’s website: 
https://crudata.uea.ac.uk/cru/data/crutem3/station-data/ 
[Last accessed 25/10/2017]. We note that the station co-
ordinates for some non-Chinese stations have been updated 
since the station data was first published in 2010: 
https://www.metoffice.gov.uk/hadobs/crutem3/jan_2010_up
date.html. We downloaded the CRUTEM4 station data from 
the UK Met Office’s website: 
https://www.metoffice.gov.uk/hadobs/crutem4/data/downlo
ad.html [Last accessed 25/10/2017]. 

2.4. CMIP5 Global Climate Model hindcasts for 
Chinese region 

In preparation for the IPCC’s 5th Assessment Report 
(Bindoff et al., 2013), climate modelling groups from 
around the world were invited to submit the results of their 
Global Climate Model (GCM) simulations through the 5th 
phase of the Coupled Model Intercomparison Project 
(CMIP5) (Taylor et al., 2012). This was an update to the 
earlier CMIP3 phase which had been used for the IPCC’s 
4th Assessment Report in 2007. One component of the 
CMIP5 submissions involved hindcasts of 20th century 
climate trends from 1900 to 2005.  

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/
https://crudata.uea.ac.uk/cru/data/crutem3/station-data/
https://www.metoffice.gov.uk/hadobs/crutem3/jan_2010_update.html.%20We%20downloaded%20the%20CRUTEM4
https://www.metoffice.gov.uk/hadobs/crutem3/jan_2010_update.html.%20We%20downloaded%20the%20CRUTEM4
https://www.metoffice.gov.uk/hadobs/crutem4/data/download.html
https://www.metoffice.gov.uk/hadobs/crutem4/data/download.html


7 

As part of their analysis, Li et al. (2017) calculated the 
regional temperature trends for China from these hindcasts 
for all 41 of the CMIP5 models. They then calculated the 
multimodel average of these 41 hindcasts. These regional 
hindcasts were provided by personal communication with 
Li. We use the multimodel average as representative of the 
CMIP5 hindcasts (rescaled relative to its 1901-2000 
average). 

2.5. 20-CR hindcast for Chinese region 
The 20th Century Reanalysis (20-CR) dataset is an 

alternative 20th century hindcast that was generated by 
running the atmosphere-land component of a Global 
Climate Model using similar CO2, solar and volcanic 
forcings to those of the CMIP5 hindcasts. The sea surface 
temperatures and sea ice estimates of the HadISST 
temperature dataset were used as boundary conditions for 
the oceanic component. However, rather than being an 
entirely model-generated hindcast, after each 6-hourly time 
step, the model outputs were adjusted so that the modelled 
surface pressures better matched the observed surface 
pressures at weather stations for that date (Compo et al., 
2011). 

Since the 20-CR dataset incorporates some 
observational data into its output, its hindcasted temperature 
estimates should better reflect observations than the 
estimates from a pure GCM hindcast. Hence, it provides a 
useful semi-empirical intermediary between the GCM 
hindcasts and the various observational datasets (Compo et 
al., 2011, 2013; Li et al., 2017). Therefore, we include the 
20-CR surface temperature estimates for the Chinese region, 
as calculated by Li et al. (2017) which was provided  by 
personal communication with Li. This data from the 20-CR 
dataset was originally provided by NOAA/OAR/ESRL 
PSD, Boulder, Colorado, USA (accessible from their 
website at http://www.esrl.noaa.gov/psd/). As before, we 
have rescaled this time series relative to its 1901-2000 
average, for comparison with the other series. 

2.6. Temperature proxy reconstructions for 
Chinese region 

A large number of temperature proxy reconstructions 
have been made for various parts of China, e.g., see (Wang 
S. et al., 2001, 2007; Shi F. et al., 2012; Yang B. et al., 
2002; Ge et al., 2013b, 2017) and references therein. A 
detailed analysis of all of these proxy series is beyond the 
scope of this paper. Instead, we will confine ourselves to 
analysing typical examples of published temperature 

proxies from different parts of China. Specifically, we have 
chosen three regions with a relatively large number of 
temperature proxy series: i) central China; ii) northeast 
China; and iii) the Tibetan Plateau. We have then 
(somewhat arbitrarily) selected four temperature proxy 
series for each of these regions. We have tried to ensure that 
these series include a mixture of proxy type (e.g., tree rings, 
ice cores, speleothems) and seasons for each region.  

The temperature proxy series we used were taken from 
the following studies: 

Central China 
• Chen et al. (2014) 
• Ge et al. (2003)  
• Tan et al. (2013) 
• Yi et al. (2012) 
Northeast China: 
• Chu et al. (2011) 
• Wiles et al. (2014) - note technically this is a 

northeast Asia proxy. 
• Zhu et al. (2015) 
• Zhu et al. (2016) 
Tibetan Plateau: 
• Fan et al. (2010) 
• Shi et al. (2016) 
• Wang et al. (2015) 
• Yang et al. (2008) 
We also compiled five multiproxy reconstructions for 

all of China: 
• Shi et al. (2012) 
• Wang et al. (2007) 
• Yang et al. (2002) 
• Ge et al. (2017) – Principal Component 

Regression (PCR) reconstruction 
• Ge et al. (2017) – Partial Least Squares (PLS) 

reconstruction 
Since the focus of this paper is mainly on temperature 

trends since the 19th century, we only consider the post-
1800 portions of these reconstructions. Again, we have 
rescaled each of these series relative to their 1901-2000 
average values. 

3. Results and discussion 

3.1. The representativeness problem 

3.1.1. Spatial sampling challenges 

http://www.esrl.noaa.gov/psd/
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Figure 2. Analysis of the spatial representativeness of the 143 
stations in the National Baseline Climate Station Network 
dataset for China, as determined by Guo et al. (2010). Data 
was digitized or transcribed from Guo et al., (2010). For each 
category, the left (green) columns correspond to the actual % 
of China’s land surface, while the right (red) columns 
correspond to the % of stations in the network. 

Figure 2 presents an analysis of the spatial 
representativeness of the 143 stations in the National 
Baseline Climate Station Network dataset for China, as 
determined by Guo et al. (2010). Although most of the 
different climatic regimes are represented by stations in this 
dataset, several of the regimes are significantly under-
represented (or even have no stations). For instance, 59% of 
the Chinese land area is currently mostly grass land or 
forestry, but only 28% of the stations in the dataset are from 
these types of land. Similarly, 27% of the land area is at an 
elevation of greater than 2000m, but only 11% of the 
stations are from those elevations.  

Other regimes are significantly over-represented, e.g., 
67% of the stations in the dataset are associated with either 
crop land or urban areas, yet this only represents 20% of the 
actual land area. In particular, urban areas represent less 
than 1% of the land area (0.3%) yet 20.6% of the stations in 
the dataset. As will be discussed in Section 3.2, urban 
stations often report more warming than rural stations due 
to urbanization bias, so this is especially problematic.  

In Soon et al. (2015), three of us [WS, RC & MC] 
attempted to address the overrepresentation of urban 
stations by constructing a Chinese time series using only 
stations that are rural or mostly rural. We repeat this 
approach in this paper (Section 3.3). However, while urban 
areas currently represent only a small fraction of China, this 
fraction is increasing over time. Also, the local trends due to 
expanding urban heat islands are genuine climatic changes, 
and the majority of the population currently lives in urban 
areas.  

Therefore, another method is to include urban stations, 
but reduce their weighting accordingly. This is the approach 
taken by one of us [QG] in a series of studies to account for 
the over-representation of urban stations in thermometer-
based estimates (Wang F. & Ge, 2012; Ge et al., 2013; 
Wang F. et al., 2015). The weighting given by Ge et al. 
(2013; Wang F. et al., 2015) to the urban areas is very small 
- although slightly higher at 0.7% than Guo et al. (2010)’s 
estimate of 0.3%. Therefore, it is effectively equivalent to 
Soon et al. (2015)’s approach of simply removing urban 
stations. However, if the urban area continues to expand, 
perhaps this is a more rigorous and systematic approach to 
take going forward. 

This reweighting approach offers a reasonably 
straightforward method for reducing the influence of 
stations which are over-represented. However, if some 
climatic regimes are under-sampled or even have no 
stations, then the data for these regimes may be too limited, 
or simply absent. For this reason, Guo et al. (2010) 
recommended urgently setting up new climate stations in 
the under-represented regimes. However, while we echo 
this recommendation, it does not resolve the problems with 
establishing past trends.  

Ren et al. have put considerable effort into developing 
a reference network for China that is more spatially 
representative than the standard networks (Ren et al., 2015, 
2017; Zhang et al., 2010; Ren & Ren, 2011). However, they 
found that the available data was very limited before about 
1960, and so their dataset only provides data for the period 
from 1960 onwards.  
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3.1.2. Comparing thermometer data to other 
estimates, i.e., model output and proxy data 

We saw from Figure 2 that the distribution of weather 
stations is not ideal, with some climatic regimes over-
represented (e.g., urban areas and croplands) and others 
under-represented (e.g., high altitude forested regions). 
Similarly, the distribution of temperature proxies is also 
uneven. Ironically, in many cases the over- and under-
represented regions are almost reversed. For instance, both 
tree ring-based and ice core-based temperature proxies are 
mostly taken from high altitude, isolated locations that are 
often far from populated areas (e.g., Zheng et al., 2015).  

Wang S. et al. (2001, 2004, 2007) actually used this 
point to improve the spatial distribution of their estimates 
by using temperature proxy series to improve the coverage 
in climatic regions which were under-represented by 
thermometer data. However, in general, this mismatch in 
spatial distributions poses a challenge when directly 
comparing thermometer-based estimates with proxy-based 
estimates for specific regions. 

On the other hand, the output from Global Climate 
Models hindcasts and reanalyses such as the 20th Century 
Reanalysis (20CR) are perfectly evenly distributed. That is, 
the model output is typically generated in terms of evenly 
distributed grid boxes, e.g., 1°×1° (Li et al., 2017).  

Therefore, when we are comparing model output, 
thermometer-based and proxy-based estimates of regional 
temperature trends (as we do in this paper), we should be 
wary of the fact that they may each be sampling different 
climatic regimes.  

Having said that, if the thermometer-based estimates 
and proxy-based estimates both contain data from a 
sufficiently representative range of climatic regimes then it 
may be reasonable to compare both types of estimates to 
each other and to model output – even if the specific spatial 
distributions are different. We saw from Figure 2 that, 
although the spatial distribution of weather stations was not 
perfect, most of the main climatic regimes have at least 
some data. However, as Guo et al. (2010) noted, it would be 
desirable to improve the spatial representativeness of the 
weather station data further. The same applies to the 
temperature proxy data. 

One way to improve the spatial representativeness of 
the available temperature proxies is to construct proxies 
from historical documents, e.g., non-thermometer based 
weather records, since these documents were often written 
in regions close to present day weather stations. This is an 
area of research which several of us have already been 

working on (e.g., Ge et al., 2003; Ding et al., 2015; Zheng 
et al., 2017; Liu et al., 2017), as historical records can act as 
very useful temperature proxies, and we encourage further 
research along these lines (Ge et al., 2016). Another way to 
improve the representativeness could be to weight the data 
according to the relative area occupied by the climatic 
regime being sampled, as discussed in the previous section.  

3.1.3. Annual mean surface air temperatures vs. 
other metrics 

In this review, we will mostly be focusing on the 
annually-averaged mean surface air temperatures for China. 
Even for this relatively straightforward temperature metric, 
we have seen that there is considerable debate. For this 
reason, we will mostly limit the scope of this review to this 
metric. However, the annually-averaged mean trends do not 
always capture all of the socially- and/or scientifically- 
relevant aspects of temperature changes. Therefore, it is 
worth briefly reviewing the relevance of other temperature 
metrics. 

Surface air temperature trends are typically described 
in terms of the mean daily temperature (“Tmean”). However, 
the temperature trends are often different for the daily 
minima (“Tmin”) values (usually night-time) and the daily 
maxima (“Tmax”) values (usually afternoon). For instance, in 
a recent simulation of the urban heat island associated with 
Beijing, Liu X. et al. (2018) calculated that the urban 
warming was most pronounced for the night-time minima 
(i.e., Tmin) and less pronounced for the daily maxima (i.e., 
Tmax). This is consistent with many studies of urbanization 
bias in China which typically seem to find the bias is 
greatest for Tmin, e.g., Zhou et al. (2004); Zhang et al. 
(2005); Hua et al. (2008); Yang Y.-J. et al. (2013); Wang J. 
et al. (2013); Zhang et al. (2014); Ren (2015). Fall et al. 
(2011) also find that siting biases which occur when 
weather stations are poorly sited (and thereby strongly 
influenced by local microclimates) are most pronounced for 
Tmin. On the other hand, McNider et al. (2012) argue that 
changes in atmospheric temperatures, e.g., from increased 
greenhouse gas concentrations, are more likely to be 
captured by changes in Tmax than Tmin.  

For these reasons, depending on the aspects of 
temperature variability that are being studied, it may be 
more relevant to study Tmax or Tmin instead of Tmean. Another 
related metric which can be of interest is the so-called 
“Diurnal Temperature Range” (DTR), i.e., the difference in 
temperature between Tmax and Tmin, e.g., Zhang et al. 
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(2005); Fall et al. (2011); Wang J. et al. (2013); Li et al. 
(2015); Ren (2015). 

 From a societal perspective, it can often be more 
relevant to study changes in the frequencies of days 
above/below certain thresholds, e.g., changes in the growing 
season length (for agricultural purposes), or in the 
occurrence of heat waves or extreme cold days (e.g., Pielke 
et al., 2002; Ren et al., 2012; Li et al., 2015).  

On the other hand, if you are assessing trends in the 
atmospheric heat content of the Earth system, then studying 
changes in surface air temperatures may not be sufficient. 
For instance, Pielke et al. (2004) note that changes in the 
heat content of surface air can also manifest themselves as 
changes in absolute humidity instead of just temperature 
(see also Liu X. et al., 2018). Therefore, Pielke et al. (2004) 
recommend combining humidity measurements with 
temperature records when studying trends in surface heat 
content. Also, Lin et al. (2015) note that the temperature 
trends when measured at a height of 2m (the typical height 
of most temperature stations) can be different from the 
trends at different heights. 

Often temperature trends vary with season, e.g., Pielke 
et al. (2002); Hua et al. (2008); Ren et al. (2012); Li et al. 
(2015); Yan et al. (2015); Sun et al. (2017b); Kawakubo et 
al. (2017); Liu Z. et al. (2018). For this reason, it can be 
desirable to separate the annual temperature trends into their 
seasonal components – winter, spring, summer and autumn. 
This is especially relevant when comparing temperature 
proxies to instrumental records since the behavior of a 
temperature proxy is often most influenced by a particular 
season, e.g., tree ring growth may be most influenced by 
temperatures during the summer. However, although we 
will briefly revisit the issue of seasonality in Section 3.5, for 
this review, we will confine our discussion to the annually-
averaged Tmean surface air temperature trends. 

3.2. The problem of non-climatic biases 
It is well-known that the multi-decadal temperature 

records of weather stations are frequently affected by 
various non-climatic biases (e.g., Mitchell, 1953; Oke, 
1973; Karl & Williams, 1987; Easterling & Peterson, 1995; 
Pielke et al., 2007a; Pielke et al., 2007b; Menne & 
Williams, 2009; Ren et al., 2015; Soon et al., 2015; Li et al., 
2017). Therefore, when using weather station records to 
estimate long-term regional (or global) climatic 
temperatures trends, it is important to correct or account for 
these non-climatic biases.  

Some events which could introduce a non-climatic 
bias into a station’s temperature record include: station 

moves (Karl & Williams, 1987; Butler et al., 2005; Menne 
& Williams, 2009; Soon et al., 2015); changes in the time of 
observation (Karl et al., 1986; Tang & Ren, 2005; Li et al., 
2017); changes in the types of thermometer used and/or the 
instrument shelter used to house the thermometer (Mitchell, 
1953; Butler et al., 2005); changes in the method by which 
daily temperatures are calculated (Mitchell, 1953; Butler et 
al., 2005); changes in the immediate surroundings of the 
thermometer, such as the construction of new buildings, car 
parks, etc. (Pielke et al., 2007a; Pielke et al., 2007b; Menne 
et al., 2010; Fall et al., 2011); urbanization bias (e.g., 
Mitchell, 1953; Oke, 1973; Karl et al., 1988; Ge et al., 
2013; Wang F. et al., 2015; Soon et al., 2015; Ren et al., 
2017). 

3.2.1. The urbanization bias debate 
There has been considerable ongoing debate since the 

1990s over the extent to which urbanization bias has 
affected estimates of Chinese temperature trends. Until 
now, the discussion of the urbanization bias problem for 
China has mostly focused on its relevance for recent 
temperature trends, i.e., the rate of warming in recent 
decades. This is understandable since the rate of urban 
development in China has been most pronounced in recent 
decades (especially since the early 1980s). As a result, those 
studies which have found a substantial urbanization bias 
have found that it has increased the apparent warmth of the 
recent warm period, but not had as much influence on 
temperatures in the earlier decades. This seems to have led 
many to the mistaken assumption that it has no relevance 
for the apparent warmth of the early 20th century. It is true 
that the urbanization bias in China is most pronounced for 
the recent warm period. However, when urbanization bias 
substantially increases the apparent warmth of the recent 
warm period, it also reduces the apparent relative warmth of 
the early warm period. Specifically, if urbanization bias 
makes the recent warm period seem warmer, then it also 
makes the earlier warm period seem cooler (in comparison). 
Therefore, in this section, we will review the reasons for the 
debate over the extent to which urbanization bias has 
affected Chinese temperature estimates. 

Most studies agree that individual station records from 
highly urbanized cities may have been significantly affected 
by urbanization bias, e.g., Beijing (Ren et al., 2007; Zhang 
L. et al., 2014; Zhang Y. & Ren, 2014; Yan et al., 2010; 
Wang et al., 2013). However, calculating the net effects of 
urbanization bias on regional and national temperature trend 
estimates has been more challenging and contentious. 
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For instance, Jones et al. (1990) argued that there had 
been no significant urbanization bias for eastern China. Yet, 
in a separate study involving two co-authors of Jones et al. 
(1990) and using the same dataset, Wang et al. (1990) found 
that the urban stations in that dataset showed an average 
urbanization bias of +0.04°C/decade over the 1954-83 study 
period. This suggested that ~33% of the +0.12°C/decade 
warming trend of the urban stations was due to urbanization 
bias. They also noted that most of the “rural” stations in the 
dataset were probably quite urbanized themselves. Portman 
(1993) carried out a more detailed analysis for one of the 
regions in the previous studies (“Northern plains”) and 
found similar biases (between 0.05°C/decade and 
0.09°C/decade) for the same period. Moreover, he found a 
slight cooling trend for the rural stations (-0.01°C/decade), 
meaning that all of the warming observed for that region 
was due to urbanization bias. 

However, after homogenizing the Chinese station data, 
Li et al. (2004) found that removing the 30% most urban 
stations (according to associated population) made almost 
no difference to their estimates of Chinese temperature 
trends over the 1951-2000 period. They concluded that the 
net effect of urbanization bias on regional trends was almost 
negligible (at least after homogenization). Zhou et al. (2004) 
did find some evidence of urbanization bias for winter 
temperatures in their study of southeast China for the 1979-
1998 period, but calculated that the net contribution to 
regional trends was only 11% (+0.05°C/decade out of the 
observed +0.45°C/decade warming trend). On the other 
hand, when Zhang et al. (2005) extended the analysis of 
Zhou et al. to cover all of eastern China for 1960-1999, they 
found that urbanization bias (and other changes in land use) 
could explain up to +0.12°C/decade of the observed 
warming, i.e., 18% of the observed +0.66°C/decade 
warming trend. 

In 2005, Ren et al. published a series of analyses 
(Zhou & Ren, 2005; Chu & Ren, 2005; Chen et al., 2005; 
Zhang & Ren, 2005; Ren et al., 2005) each demonstrating a 
significant effect from urbanization bias to regional 
temperature trends for: North China, the Shandong and 
Hubei provinces and the Beijing area. Ren et al. (2005) also 
noted that balloon measurements only showed a very 
modest rate of warming (+0.05°C/decade) for the lower-to-
mid troposphere (400-850hPa) relative to surface 
temperatures (+0.30°C/decade) for China over the 1961-
2004 period. This was consistent with the surface 
temperature estimates being significantly biased by 
urbanization. 

Since then, there have been numerous different 
estimates of the magnitude of the urbanization bias 
problem, with several studies claiming it is considerable 
(Soon et al., 2015; Ren, 2015; Ren et al., 2008, 2015, 2017; 
Sun et al., 2016; Hua et al., 2008; Zhang et al., 2010; Ren & 
Ren, 2011; He & Jia, 2012; He et al., 2013; Ge et al., 2013a; 
Li et al., 2013), others claiming it is relatively modest 
(Jones et al., 2008; Wu & Yang, 2013; Zhao et al., 2014), 
and others claiming it is almost negligible (Li et al., 2010a, 
2017; Yan et al., 2016; Wang J. & Yan, 2016; Wang et al., 
2017; Wang F. et al., 2015). 

One factor for the debate over the magnitude of the 
urbanization bias is that the rural and urban stations are 
often in climatically different regions of China, e.g., many 
of the rural stations are in mountainous regions, while most 
of the urban stations are located in the plains (Ren et al., 
2015; Wang J. et al., 2013). For instance, Wang J. et al. 
(2013) analysed 20 stations in the Greater Beijing area for 
the period 1978-2008. They identified 7 of these stations as 
“urban”, 4 as “suburban” and the remaining 9 as being rural. 
However, because 6 of these rural stations were from 
mountainous regions, they excluded them from their “rural” 
subset and only used the 3 non-mountainous rural stations 
for their assessment of urbanization bias. They found that 
the 7 urban stations showed an extra +0.148°C/decade 
warming relative to the 6 rural mountain stations (i.e., 
24.5% of the +0.604°C/decade warming trend of the urban 
stations). However, relative to the 3 rural plains stations, the 
extra warming of the urban stations was only 
0.066°C/decade (i.e., only 10.9% of the +0.604°C/decade 
warming trend of the urban stations).  

Another factor is the methods used for classifying 
stations into “urban” and “rural” subsets. Early studies often 
simply divided stations into those with an associated 
population above (“urban”) or below (“rural”) a certain 
threshold value, e.g., (Jones et al., 1990; Wang et al., 1990; 
Portman, 1993; Li et al., 2004). However, it is now 
recognised that such simple classifications are often 
inadequate for estimating the true magnitude of 
urbanization bias effects (Stewart & Oke, 2012). First, the 
growth of urban heat islands is a continual process. It is not 
a simple situation where there is a single degree of 
urbanization below which there is no urban heat island and 
above which there is a constant urban heat island. Instead, 
the magnitude of the urban heat island tends to gradually 
increase as the area becomes more urbanized. So, the use of 
a single “urban/rural” threshold could mistakenly include 
urban stations into the “rural” subset and vice versa. Hence, 
several studies have started classifying stations into multiple 
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subsets/categories, e.g., (Soon et al., 2015; Stewart & Oke, 
2012; Wang F. & Ge, 2012; Li et al., 2013; Yang X. C. et 
al., 2011). 

Also, while heavily urbanized areas tend to have a 
much higher population than rural areas, the use of a single 
population value is a very crude metric for estimating the 
rate of urbanization of an individual station. For instance, in 
some large old cities, much of the population growth may 
have occurred before the station was set up (Jones et al., 
2008), while the actual urbanization experienced by a 
station in a smaller, but faster growing urban area might be 
greater (Stewart & Oke, 2012). Also, the rate of 
urbanization experienced by a station could be different in 
the urban centre compared to the outskirts of a city (Yang et 
al., 2013; Shi T. et al., 2015; Zhang et al., 2014; Zhang & 
Ren, 2014). 

For these reasons, several studies have tried to develop 
more sophisticated methods for classifying the urbanization 
of stations using combinations of different urbanization 
metrics, such as satellite-derived land surface temperatures 
(i.e., thermal environment); satellite-measured nighttime 
light imagery; estimates of land use changes; as well as 
population-based metrics, e.g., (Soon et al., 2015; Ren & 
Ren, 2011; Wang Y. et al., 2011; Stewart & Oke, 2012; 
Wang F. & Ge, 2012; He & Jia, 2012; He et al., 2013; Ge et 
al., 2013a; Li et al., 2013; Yang et al., 2013; Shi T. et al., 
2015; Zhang et al., 2014; Zhang & Ren, 2014; Yang et al., 
2011; Li et al., 2015). For instance, using satellite imagery, 
Zhang et al. (2017) found an increase of 0.62°C in the 
average land surface temperature for every 10% increase in 
impervious surface area (a measure of urbanization). 
Ideally, these methods should be able to quantify the 
changes in urbanization over time as well as the degree of 
urbanization, so that the rates of urbanization can be 
studied, e.g., (Stewart & Oke, 2012; Wang F. & Ge, 2012; 
He & Jia, 2012; He et al., 2013; Ge et al., 2013a; Li et al., 
2013; Yang et al., 2011). 

A major problem for estimating the magnitude of the 
urbanization bias is that there are other non-climatic biases 
which can affect station records, and it is very challenging 
to separate these biases from each other. For instance, while 
most Chinese weather stations currently use the same 
observation times for recording daily temperatures, before 
the 1950s, observation times may have varied from station 
to station and over time (Tang & Ren, 2005; Tang et al., 
2010). Also, individual station records may have non-
climatic biases due to changes in instrumentation and/or 
changes in the local environment. 

In particular, several groups have noted that in China, 
it is common practice to occasionally relocate weather 
stations that have become highly urbanized into less built-
up suburban locations. However, over time these suburban 
locations can themselves become urbanized, resulting in a 
complex mixture of non-climatic biases (gradual urban 
warming followed by abrupt cooling station moves). Some 
groups have argued that correcting for these station moves 
could reduce the magnitude of the apparent urbanization 
bias (Yan et al., 2016; Wang J. & Yan, 2016; Yan Z. W. et 
al., 2010; Wang J. et al., 2013). Other groups have argued 
that correcting for these station moves increases the 
apparent urbanization bias (Ren et al., 2007; Yang et al., 
2013; Shi T. et al., 2015). 

3.2.2. The debate over homogenization 
approaches 

In an attempt to simultaneously correct for all of these 
non-climatic biases, several statistics-based, 
“homogenization” procedures have been developed, e.g., 
Karl & Williams (1987); Easterling & Peterson (1995); Li 
et al. (2004; 2010); Menne & Williams (2009); Xu et al., 
2013; Lakatos et al., 2013. These homogenization 
algorithms statistically compare each station record to the 
records of its neighbours to try and identify anomalous step 
changes in a given record which might be due to a non-
climatic bias, such as a station move. The algorithms then 
estimate the magnitude of this proposed bias and apply an 
equivalent (but opposite) adjustment to the raw station 
record. The use of these homogenization algorithms can be 
combined with station history (or “metadata”) information 
(if available) and/or the manual inspection of station 
records, e.g., Karl & Williams (1987); Li et al. (2004; 2010; 
2017); Ren et al. (2017). Alternatively, it may be an entirely 
automated process which does not consider the station 
histories, e.g., Easterling & Peterson (1995); Menne & 
Williams (2009). 

Some studies have suggested that using homogenized 
data reduces the apparent urbanization bias problem, e.g., 
(Xu et al., 2017; Yan et al., 2016; Wang J. & Yan, 2016). 
Two different arguments seem to be involved. Wang J. et al. 
(Wang J. & Yan, 2016; Yan et al., 2016) suggest that rural 
sites might be more affected than urban sites by non-
climatic cooling biases, and that this leads to an 
overestimation of the urbanization bias when using non-
homogenized data. On the other hand, Xu et al. (2017) 
suggest that the homogenization process itself could remove 
some of the urbanization biases in the data. They argue that 
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“in many cases, urban influences on temperatures at a 
station will be manifested as a step change [...] and will be 
adjusted for as part of the general homogenization 
process”. However, many of the studies which found 
evidence of urbanization bias in Chinese temperature 
estimates were using homogenized data, e.g., (Ren et al., 
2008, 2015, 2017; Ren & Ren, 2011; He & Jia, 2012; He et 
al., 2013; Ge et al., 2013a; Yang et al., 2013; Yang et al., 
2011). Also, as mentioned earlier, Soon et al. (2015) noted 
that applying a popular homogenization algorithm (i.e., 
Menne & Williams, 2009) failed to remove or even identify 
any of the urbanization bias for the Chinese data when there 
was a relatively high fraction of rural data (i.e., 1951-1990). 

Moreover, Soon et al. (2015) found evidence that, 
whenever the rural stations were rarer, the homogenization 
process often led to “urban blending”. When the 
homogenization process is estimating the sign and 
magnitude of a potential non-climatic bias, the target record 
is compared to that of its neighbours. However, if a 
significant fraction of the neighbours are affected by 
urbanization bias, then the calculated sign and magnitude of 
the identified “non-climatic bias” will be inadvertently 
biased by the urbanization bias of the neighbours. That is, 
some of the urbanization bias of the neighbours will be 
“aliased” into the homogenized record – see deGaetano 
(2006) and Pielke et al. (2007a). This means that applying 
homogenization with an urbanized network will have a 
tendency to underestimate the magnitude of any biases 
which introduce a “warming” trend, while overestimating 
the magnitude of any biases which introduce a “cooling” 
trend. The net tendency of this urban blending would be to 
artificially cool the earlier period and warm the recent 
period. Additionally, while the trends of the most urban 
stations would tend to be partially reduced, the trends of the 
rural stations would also tend to be increased to match those 
of their urban neighbours. This mixing process certainly 
would tend to make the station data more “homogeneous”, 
in that all stations would have fairly similar trends. But, it 
would not actually remove the non-climatic biases. Instead, 
homogenization would distribute the biases more evenly 
amongst all stations. 

Although the “blending” or “aliasing” problem of the 
current homogenization processes has been recognized for 
more than a decade (deGaetano, 2006; Pielke et al., 2007a; 
Soon et al., 2015), its effects on homogenized temperature 
data seem to have been largely overlooked, e.g., there is no 
discussion of the problem in any of the following studies 
which describe homogenized Chinese datasets: Li Q. et al. 
(2004; 2010; 2017); Li Z. et al (2010; 2015); Ren et al. 

(2012; 2017); Xu et al. (2013); Cao et al. (2013); Ding et al. 
(2014); Wang J.F. et al. (2014). Menne & Williams (2009) 
and Hausfather et al. (2013) briefly considered the 
possibility that “aliasing” might be a concern, but only 
carried out a preliminary assessment. Therefore, it is worth 
addressing this issue in a separate subsection. 

3.2.3. The blending problem of current 
homogenization techniques 

All of the current homogenization procedures 
essentially work by comparing each station’s record to those 
of its neighbours. For instance, the Easterling & Peterson 
(1995) approach involves the construction of a “reference 
series” for each of the stations. This reference series is the 
average of five of the neighbouring station records. The 
reference series is then subtracted from the record of the 
station being tested (“the target series”) and the “difference 
series” is then statistically analysed for any unusual step 
changes (known as “breakpoints”). Whenever a breakpoint 
passes a given statistical significance test, it is assumed to 
be a non-climatic bias. Li et al. (2004)’s first homogenized 
dataset for China was largely based on Easterling & 
Peterson (1995), but station history information was also 
used to assess if the statistically-identified breakpoints 
corresponded to documented station changes. 

Other algorithms use variations of this basic approach, 
e.g., rather than using a single reference series, the Menne 
& Williams (2009) algorithm directly compares each target 
series with 40 different neighbouring stations (one-at-a-
time). The “MASH” algorithm (Lakatos et al., 2013) used 
by Li Z. et al. (Li Z. & Yan, 2010; Li Z. et al., 2015) is 
similar. However, in all cases, for our discussion here, the 
basic principles are essentially the same.  

The next step of the algorithm involves estimating the 
magnitude and sign of this apparent bias. Typically, to do 
this, the algorithm calculates the mean temperature (for 
some given length of time) of the target station before and 
after the break-point. It then compares this difference to the 
equivalent differences of the neighbouring stations. The 
“RHtests” algorithm (Vincent et al., 2012) currently used by 
Li Q. et al. (2010; 2017; Xu et al., 2013) takes a slightly 
more complex approach and compares the statistical 
distribution of the temperatures before and after the break-
point in terms of quantiles instead of just means (Vincent et 
al., 2012; Xu et al., 2013). However, for our discussion, 
both approaches are equivalent. It is this step which 
inadvertently leads to the blending problem. 
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Figure 3. The six synthetic time series of "temperature 
anomalies" with various degrees of urbanization bias added, 
which we use to demonstrate the theoretical basis for the 
urban blending problem of current homogenization 
techniques. All six series initially consisted of random values 
between -0.25°C and +0.25°C, and therefore have no long-term 
secular trend. However, for series 2-6 [(b) to (f)], different 
linear “ramps” have been added to mimic “urbanization bias”: 
b) +0.05°C/decade since 1980; c) +0.1°C/decade since 1950; d) 
+0.1°C/decade since 1900; e) +0.2°C/decade since 1980; f) 
+0.2°C/decade since 1950. 

 
 
 

As a thought experiment, let us suppose that global 
temperatures have been constant since 1900. Now, let us 
suppose we have 6 neighbouring stations with complete 
station records (1900-2016). Let us also suppose that each 
of these stations have experienced different degrees of 
urbanization over the length of their record. In Figure 3, we 
plot 6 synthetic time series. To mimic the local variability, 
for each of the series, the underlying temperature anomaly 
for each year is a random value between -0.25°C and + 
0.25°C. To mimic urbanization bias, we have then added 
various linear trend ramps to each series. Series 1 we have 
left unaffected by urbanization bias, and is representative of 
a rural station for our thought experiment. Of the rest of the 
series, Series 2 has had the smallest bias added to it with a 
relatively small trend of +0.05°C/decade from 1980 
onwards.  Meanwhile Series 6 has had the largest 
urbanization bias added to it, with a linear trend of 
+0.2°C/decade from 1950 onwards.  

As we discussed above, there are various approaches 
to using reference series for homogenization. For simplicity, 
let us take the Easterling & Peterson (1995) approach. 
Therefore, the “reference series” for homogenizing Series 1 
(a rural station) will be the mean of Series 2-6 and the 
“reference series” for homogenizing Series 6 (a heavily 
urbanized station) will be the mean of Series 1-5. Both 
reference series will be affected by urbanization bias, 
because either four or five of the five neighbours contain at 
least some urbanization bias. 

Now, let us suppose that Series 1 (rural) actually has 
experienced several station moves, and that all of these 
station moves have been documented. In Figure 4, we have 
arbitrarily added four step change biases each at 25 year 
intervals, with each coincidentally cancelling out the 
previous bias: +0.5°C, -0.5°C, -0.5°C, +0.5°C.  What would 
happen when you homogenize this record? 

In our thought experiment, because the station moves 
are documented, the timings of the station moves are 
known. However, since none of the other series have 
experienced station moves (this is of course unlikely) and 
the step changes are quite obvious, most of the standard 
automated homogenization algorithms would probably also 
correctly identify the timings of the four station moves. 
Instead, the problem occurs in identifying the magnitudes 
(and possibly sign) of the associated non-climatic bias.  
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Figure 4. Illustration of how the homogenization of a rural 
time series can lead to urban blending. a) Series 1 from Figure 
3; b) as for a) but with four station moves leading to a +0.5°C 
step bias in 1925, a -0.5°C step bias in 1950, a -0.5°C bias in 
1975 and a +0.5°C bias in 2000; c) the reference series, i.e., the 
mean of the other five time series; d) the difference between b) 
and c); e) the “rural” time series after homogenization which 
now has a linear trend comparable to the urbanized reference 
series. 

 
Figure 5. Illustration of how the homogenization of an urban 
time series can also lead to urban blending. a) Series 1 from 
Figure 3; b) as for a) but with four station moves leading to a 
+0.5°C step bias in 1925, a -0.5°C step bias in 1950, a -0.5°C 
bias in 1975 and a +0.5°C bias in 2000; c) the reference series, 
i.e., the mean of the other five time series; d) the difference 
between b) and c); e) the “rural” time series after 
homogenization which now has a linear trend comparable to 
the (still-urbanized) reference series. 

Because the reference series has a long-term warming 
urbanization bias, on average the means of the difference 
series will be warmer after the station move than before. 
Since most of the algorithms estimate the magnitudes of 
each non-climatic bias by (in some way) comparing the 
means of the difference series before and after each of the 
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station moves, this means that homogenizing Series 1 will 
artificially transfer some of the urbanization bias of the 
neighbour average into the rural station record. Indeed, we 
can see by comparing Figure 4(c) and Figure 4(e) that the 
linear trend of the homogenized series is almost exactly the 
same as the reference series (+0.068°C/decade and 
+0.067°C/decade respectively). The homogenization 
process has arguably been successful in removing the abrupt 
step changes in the original Figure 4(b) series. However, in 
the process, the warming trend of the reference series has 
been “aliased” (deGaetano, 2006; Pielke et al., 2007a) onto 
the target series. In our thought experiment, we know (by 
design) that this warming trend is urbanization bias. In other 
words, through “urban blending”, the homogenized “rural” 
time series is now affected by a similar amount of 
“urbanization bias” as its neighbours. 

Now, let us repeat the same thought process for Series 
6 (highly urbanized). In Figure 5, we have applied our four 
(arbitrary) step change biases to Series 6. Again, most of the 
standard homogenization algorithms should easily identify 
the timings of the four documented station moves. And, in 
this case, since the urbanization bias in Series 6 is greater 
than for the reference series, the blending process should 
actually partially reduce the urbanization bias in Series 6 as 
well as partially reducing the magnitude of the step biases. 
However, because the reference series itself is also affected 
by urbanization bias, the blending process only partially 
reduces the magnitude of the urbanization bias: from 
+0.073°C/decade in Figure 5(b) to +0.047°C/decade in the 
homogenized Figure 5(e) series.  

Note that this blending problem occurs regardless of 
whether the actual station moves (or other step change) led 
to cooling or warming. The problem relates to the trends of 
the reference series. In general, the more “non-climatic 
biases” (i.e., breakpoints) the homogenization procedure 
identifies and the more urban neighbours there are, the more 
urban blending will occur. The more rigorous the 
homogenization procedure is (i.e., the more breakpoints are 
identified) the more blending can occur. 

The blending problem means that homogenization will 
tend to blend (or smooth or homogenize) the non-climatic 
biases amongst all stations. Therefore, after 
homogenization, most stations will have fairly similar 
trends. Ironically, because the “rural” stations now have 
some urbanization bias and the most heavily urbanized 
stations will have had their urbanization bias partially 
reduced, comparing the “rural” and “urban” trends of 
homogenized data will tend to underestimate the extent of 
urbanization bias. This seems to have led several groups to 

conclude that the homogenization process has reduced the 
urbanization bias problem, e.g., Menne & Williams (2009); 
Yan Z. W. et al. (2010); Wang J. et al. (2013); Hausfather et 
al. (2013); Yan et al. (2016); Wang J. & Yan (2016). 
However, the above thought experiment demonstrates that 
the homogenized trends will also include the average of the 
non-climatic biases that are common to the neighbours, e.g., 
urbanization bias. 

3.2.4. Demonstration of urban blending during 
the homogenization of 10 stations near Beijing 

The above thought experiment demonstrates that – in 
principle – current homogenization algorithms can 
inadvertently lead to urban blending. Indeed, a similar 
phenomenon has already been noted by deGaetano (2006) 
and Pielke et al. (2007a) who demonstrated using various 
tests of common homogenization algorithms that 
homogenization often “aliases” the trend biases of reference 
series onto that of the target series. However, does the 
phenomenon occur in real world situations, and in 
particular, how relevant is it for the Chinese data? 

He & Jia (2012) studied the effects of a popular 
homogenization procedure called “Multiple Analysis of 
Series for Homogenization” or “MASH” (Lakatos et al., 
2013) on the temperature trends for 10 stations near Beijing, 
China over the 1978-2008 period, using the dataset 
developed by Li Z. et al. (2010). This homogenization 
process apparently used the station histories provided by the 
CMA similarly to the process used for homogenizing the 
CMA’s own datasets (Li et al., 2004; 2010; 2017). 

 During this period, the region experienced 
considerable urbanization, and He & Jia ranked the 10 
stations according to how much urbanization each station 
had experienced. They then compared the temperature 
trends for each station over the 1978-2008 period before 
and after homogenization. Before homogenization, 68% of 
the apparent warming seemed to be urbanization bias. 
However, after homogenization, the difference in warming 
between the stations was reduced to ~20%. 

Initially, the results from He & Jia (2012) seem to be 
consistent with those studies which suggest that 
homogenization reduces urbanization bias e.g., (Xu et al., 
2017; Yan et al., 2016; Wang J. & Yan, 2016). However, a 
close inspection of the results reveals that the 
homogenization process has actually led to urban blending. 
In Figure 6, we have digitized and re-plotted the results 
from He & Jia (2012). We can see that the homogenization 
process has indeed substantially reduced the apparent 
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differences between all of the stations. However, rather than 
the warming trends of all of the urban stations being 
reduced to match those of the least urbanized stations, all of 
the trends appear to have been adjusted to match those of 
the average stations – which happen to be intermediately 
urbanized. That is, the trends of the most urban stations are 
partially reduced, but the trends of the most rural stations 
are also increased.  

 

 
Figure 6. Illustration of the urban blending problem based on 
He & Jia (2012)'s study of the effects of “MASH” 
homogenization on temperature trends for 10 stations near 
Beijing, China over the 1978-2008 period. The data for this 
figure was digitized from He & Jia (2012)'s Figure 3. Values to 
the right correspond to the stations which have experienced 
the most urbanization over the 1978-2008 period. 

3.2.5. Some approaches to minimizing the 
blending problem of homogenization 

We have shown above that the application of the 
current temperature homogenization processes to weather 
station records can inadvertently lead to a blending of non-
climatic biases among all of the stations. In these cases, the 
homogenized data will still be affected by non-climatic 
biases. Moreover, those stations which had previously been 
unaffected by those biases will have themselves become 
biased in the process. This leads to the counterintuitive 
result that the homogenization of temperature records (in an 
attempt to improve their reliability), in many cases, may 
mistakenly be making the data less reliable. 

We have limited our discussion of the blending 
problem to that for urbanization bias, i.e., “urban blending”. 
However, the same phenomenon could also occur for other 
non-climatic biases, e.g., siting biases arising from changes 
in station exposure (Pielke et al., 2007a; Pielke et al., 
2007b; Menne et al., 2010; Fall et al., 2011). That is, if a 
given type of non-climatic bias has similarly affected 
multiple stations in a given region, then the current 
homogenization approaches may lead to a blending of those 
biases among all stations. If there are significant differences 

between the trends of a subset known to be unaffected by a 
particular bias and those of a subset affected by the bias in 
the non-homogenized data, but these differences are 
apparently reduced by the homogenization process this is 
actually a strong indication that blending of biases may 
have occurred. With this in mind, it is worth noting that 
both Menne et al. (2010) and Fall et al. (2011) have noted 
that the apparent differences in trends between well-sited 
stations and poorly-sited stations in the U.S. are almost 
entirely removed after homogenization. Previously this has 
been assumed to indicate that homogenization has reduced 
the siting biases (e.g., Menne et al., 2010; Fall et al., 2011). 
However, it should now be apparent that homogenization 
may be leading to a blending of siting biases instead of 
their removal. One way to avoid (or at least considerably 
reduce) the urban blending problem would be to only use 
definitively rural stations for homogenization. Some groups 
seem to have put considerable effort into doing this when 
homogenizing urban stations, e.g., Ren et al. (2007, 2015; 
Zhang et al., 2014; Zhang & Ren, 2014; Ren & Ren, 2011) 
and Yang Y. J. et al. (Yang et al., 2013; Li Y. B. et al., 
2015; Shi T. et al., 2015). It is interesting to note that in 
these cases, homogenization tended to increase the 
difference between rural and urban station records, i.e., the 
opposite of blending, thereby making urbanization bias 
easier to quantify. This could be a factor in why those 
studies reached different conclusions from (Yan et al., 2010, 
2016; Wang J. & Yan, 2016; Wang J. et al., 2013). 

Ren et al. have constructed a relatively large network 
of (mostly rural) reference stations for China for the post-
1960 period, and they have been able to use this for 
homogenizing the Chinese temperature data from 1961-
onwards (Ren et al., 2015, 2017; Zhang et al., 2010; Ren & 
Ren, 2011). They confirmed that there has been a warming 
trend since the 1970s for China, but that urbanization bias 
had exaggerated that trend by at least 27%. However, while 
using rural stations for homogenizing is feasible when there 
is a relatively high density of rural stations, there are very 
few rural stations with data for the early 20th century, i.e., 
the period including the 1920s-40s warm period. Therefore, 
Ren et al.’s homogenized reference network cannot be used 
for directly assessing the early 20th century period.  

Similarly, Karl et al. (1988) put a considerable effort 
into constructing the U.S. Historical Climatology Network 
for the United States. However, while this should reduce the 
blending problems of homogenization, it might not 
completely remove them. For instance, Fall et al. (2011) and 
Soon et al. (2015) have shown that urbanization bias and 
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siting biases are still present in even the high quality U.S. 
Historical Climatology Network. 

So, while it is clearly desirable to remove any non-
climatic biases from the station records before estimating 
Chinese temperature trends, we should also be cautious that 
the current homogenization procedures may not actually be 
removing all of these biases, and may even be introducing 
new biases. Hence, while there is widespread agreement 
that the raw, unadjusted station records contain non-climatic 
biases, there is an open debate over whether the current 
homogenized datasets are more reliable or not. 

3.3. Construction of new relatively-rural 
estimate of Chinese temperature trends 

 

Figure 7. Chinese temperature trends according to each of the 
five GHCN version 4 subsets. Error bars are indicated with 
gray curves, and correspond to twice the standard error. All 
reconstructions are shown relative to their 20th century mean 
(1901-2000). Values above and below that mean are 

highlighted with red and blue shading, respectively. The 
station locations for each subset are shown in the maps on the 
right hand side. 

Figure 7 shows the different estimates of Chinese 
temperature trends which are obtained when using the five 
different subsets from Figure 1 of the Chinese stations in 
version 4 of the GHCN (non-homogenized) dataset. Unlike 
the analysis in Soon et al. (2015) which only considered 
three subsets, the differences between each subset can be 
relatively subtle, e.g., Subsets 3 and 4 are quite similar to 
each other while Subsets 2 and 3 are also quite similar to 
each other. However, in general, the more rural the subset 
is, the warmer the early 20th century warm period becomes 
and the cooler the current warm period becomes. This is 
certainly consistent with the more urban subsets being 
affected by urbanization bias. 

On the other hand, it can be seen from the subset maps 
that the spatial distribution of stations also varies with each 
subset. As discussed in the previous section, most of the 
urban stations tend to be in eastern China (especially near 
the eastern coast), while most of the rural stations tend to be 
in western China (especially in the more mountainous 
regions). Therefore, it is possible that some of the 
differences between the subsets could be related to their 
different spatial distributions and geographical settings. 

Another problem (also discussed in the previous 
section) is that the longest and most complete station 
records tend to be from the more urban subsets. This can be 
seen more clearly in Figure 8, which shows the percentages 
of each subset with data for a given year. Although each 
subset contains exactly 20% of the stations in the GHCN 
dataset, it can be seen that the more rural subsets tend to 
have much shorter records and the relative breakdown of 
the subsets changes quite dramatically over time.  

 

 
Figure 8. Breakdown of the Chinese urban subsets with data 
available for each year in the GHCN version 4 dataset. 
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For instance, the only stations with data from 1841-
1873 are all from Subset 1 (the most urban subset), and for 
the rest of the 19th century (aside from one year, 1899), all 
of the station data comes from Subsets 1 and 2 (the two 
most urban subsets). While the data for the 1960-1990 
period is relatively evenly distributed among the subsets 
(and to a lesser extent, the post-1990 period), for the early 
20th century, the most rural subsets have relatively little 
data. Unfortunately, this coincides with one of the two 
periods we are focusing on in this paper, i.e., 1920s-1940s. 
So, while there is a reasonable amount of data for 
comparing the two warm periods for the urban subsets, the 
data is much more limited for the rural subsets. 

 

 
Figure 9. Relatively rural composite Chinese temperature 
trends since the 19th century, relative to the 20th century mean 
(1901-2000). Error bars are indicated with gray curves, and 
correspond to twice the standard error. Values above and 
below that mean are highlighted with red and blue shading, 
respectively. The bottom panels indicate the fraction of 
available Chinese GHCN version 4 stations used for each year. 

Hence, rather than using just the most rural subset 
(Subset 5) for comparing the two periods, we adopt a 
similar approach to Soon et al. (2015) and develop a 
“relatively rural composite” by including some of the data 
from the urbanized subsets for the earlier periods to increase 
the amount of available data. This composite is plotted in 
Figure 9 along with details on its composition.  

For the 1951-2016 period, all of the subsets have a 
relatively large number of stations with data. Therefore, we 
only use the two most rural subsets (Subsets 4 & 5) for our 
composite. However, as can be seen from Figure 8, neither 
of these subsets have a lot of data before 1951. Therefore, 
for the 1916-1950 period, we also include stations from the 
moderately urbanized Subset 3. Before 1916, there is almost 
no available data from the rural subsets. Therefore, for the 
1841-1915 period, we use all available stations, regardless 

of how urbanized they are. Because our composite, by 
necessity, includes some data from urban stations 
(particularly for the early years), it is not a completely rural 
composite. Therefore, we refer to it as a “relatively rural 
composite”. It should be less affected by urbanization bias 
than estimates constructed from all stations, but it may still 
contain some urbanization bias. 

The error bars are greatest when the numbers of 
available stations are low. Therefore, the uncertainties 
associated with our composite increase the further back in 
time we consider. Because there are very few stations with 
data before the 1950s, and almost none for the 19th century, 
the error bars are fairly wide for the early 20th century and 
very wide for the 19th century. Nonetheless, the composite 
suggests that the 1940s were relatively warm, if slightly 
cooler than the recent warm period. It is also possible that 
there were some relatively warm periods during the 19th 
century, but given the large error bars for this period, this 
possibility should be considered cautiously. 

3.4. Comparison of different estimates of 
Chinese temperature trends 

As a simple metric for comparing the various 
estimates of Chinese temperature trends, we calculated the 
hottest year for each of the estimates for the 1901-1950 
period, and separately for the 1951-present period. In Table 
1, we have ranked all of the estimates according to the 
differences (ΔT) between these two peak years. That is, 
according to the estimate at the start of the table - Soon et 
al. (2015) – the recent peak year (2007) was colder than the 
early 20th century peak year (1946) by 0.45°C, while 
according to the estimate at the end of the table – Li et al. 
(2017) – the recent peak year (also 2007) was hotter than 
the earlier peak year (also 1946) by 1.12°C. The full data 
series are also plotted in Figure 10 using this same ranking.  

Although this metric for comparing the various 
estimates is rather crude, it nonetheless provides some 
useful insights. For instance, we note that – aside from the 
two computer model-based hindcasts (i.e., the 20th Century 
Reanalysis and CMIP5 multimodel mean) – all of the 
estimates identify the same year (1946) as being the hottest 
year in the 1901-1950 period. Similarly, all of the estimates 
except for the two hindcasts identify one of two years (1998 
or 2007) as being the hottest for the 1951-present period. 
This suggests that, despite the differences between each of 
the estimates, they are closely related. It also highlights that 
the computer model-based hindcasts are not very good at 
simulating the observed peaks.  
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Table 1. Linear trends for the early (1901-1950) and late (1951-2000) 20th century, along with the hottest years during the 1901-1950 and 1951-present periods for each of the sixteen 
reconstructions in Figure 5, ranked according to the differences between the peak years. Temperatures (°C) are relative to the 1901-2000 annual means. 

    
1901-2000 1901-1950 1951-2000 1951-end of series Differences 

# Study Reconstruction details Period 
Trend 

(°C/10y) 
Trend 

(°C/10y) 
Peak 

T (°C) 
Peak 
Year 

Trend 
(°C/10y) 

Peak 
T (°C) 

Peak 
Year 

Δ Trend 
(°C/10y) 

ΔT 
(°C) 

1 Soon et al., 2015 GHCN v3 (raw), mostly rural composite 1841-2014 +0.00 +0.25 1.30 1946 +0.10 0.85 2007 -0.15 -0.45 

2 This study GHCN v3 (raw), all stations 1841-2014 +0.05 +0.23 1.05 1946 +0.18 1.21 1998 -0.05 0.16 

3 This study CRUTEM v3 (homogenized) 1841-2010 +0.07 +0.21 1.01 1946 +0.19 1.34 1998 -0.02 0.33 

4 Ding et al., 2014 China Climate Change Monitoring Bulletin 1901-2013 +0.06 +0.22 1.03 1946 +0.16 1.44 2007 -0.06 0.41 

~5 This study GHCN v4 (raw), relatively rural composite 1841-2016 +0.06 +0.20 0.97 1946 +0.16 1.39 1998 -0.04 0.42 

~5 This study GHCN v3 (MW09-adjusted), all stations 1841-2014 +0.08 +0.19 0.91 1946 +0.19 1.33 1998 0.00 0.42 

7 Tang & Ren, 2005 Max/Min (updated by Ren et al., 2017) 1901-2016 +0.06 +0.23 1.03 1946 +0.17 1.49 2007 -0.06 0.46 

8 Li et al., 2017 20th Century Reanalysis hindcast 1900-2005 +0.11 +0.09 0.25 1944 +0.13 0.73 1994 +0.04 0.48 

9 Li et al., 2017 Li & Xu records (raw) 1900-2015 +0.07 +0.18 0.99 1946 +0.18 1.54 2007 0.00 0.55 

10 This study GHCN v4 (raw), all stations 1841-2016 +0.08 +0.20 0.85 1946 +0.18 1.45 1998 -0.02 0.60 

11 This study CRUTEM v4 (homogenized) 1841-2016 +0.08 +0.14 1.03 1946 +0.20 1.66 2007 +0.06 0.63 

12 Wang et al., 2004 Raw + proxies (updated by Ren et al., 2017) 1880-2015 +0.04 +0.24 0.79 1946 +0.17 1.48 2007 -0.07 0.69 

13 Li et al., 2017 CMIP5 regional China hindcast mean 1900-2005 +0.06 +0.08 0.09 1948 +0.12 0.83 2004 +0.04 0.74 

14 This study GHCN v4 (MW09-adjusted), all stations 1841-2016 +0.11 +0.20 0.88 1946 +0.19 1.63 1998 -0.01 0.75 

15 This study GHCN v4 (raw), most urban subset 1841-2016 +0.08 +0.18 0.78 1946 +0.18 1.69 2007 0.00 0.91 

16 Li et al., 2017 Li & Xu records (Li10-adjusted) 1900-2015 +0.09 +0.10 0.48 1946 +0.18 1.60 2007 +0.08 1.12 

  
Average values 

 
+0.07 +0.18 0.84 1946 +0.17 1.35 1998/2007 -0.02 0.51 
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Figure 10. Various instrumental-based annual temperature reconstructions (and climate model hindcasts) for China. When error 
bars were provided, these are indicated with gray curves. All reconstructions are shown relative to their 20th century mean 
(1901-2000). Values above and below that mean are highlighted with red and blue shading, respectively.
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The fact that many of the estimates imply 1998 is the 
hottest year in the 1951-present period is consistent with the 
suggestion that recent decades have involved a “warming 
hiatus” for Chinese temperatures, e.g., (Li et al., 2015; Chen 
& Zhai, 2017; Sun et al., 2017b). However, we note that 
several studies have suggested that this hiatus did not occur 
for some regions within China, e.g., the Tibetan Plateau 
(Yan & Liu, 2014; Duan & Xiao, 2015; An et al., 2017). 

In Table 1, we also present the linear trends for each of 
the series over three periods: 1901-1950, 1951-2000 and 
1901-2000. Interestingly, nine of the 16 series suggest a 
greater warming rate for the 1901-1950 period than for the 
1951-2000 period. Moreover, only four of the series suggest 
that the warming rate increased for the 1951-2000 period 
and two of these series were the model-based hindcasts. 

From Table 1 and Figure 10 we can see several 
factors which appear to influence the relative magnitudes of 
the peaks in the estimates: 
• Reducing the contribution from urbanized stations 

increases the apparent warmth of the early 20th century 
warm period and decreases the apparent warmth of the 
current warm period. 

• The two computer model-based hindcasts simulated 
almost no early 20th century warm period. 

• The transition from GHCN version 3 to version 4 
reduces the apparent warmth of the early 20th century 
warm period and increased the apparent warmth of the 
current warm period. The Li & Xu datasets seem more 
comparable to version 4 of the GHCN than version 3. 
The transition from CRUTEM3 to CRUTEM4 also 
seems to have had similar effects. 

• Using the homogenized versions of the datasets tends 
to reduce the apparent warmth of the early 20th century 
warm period and increase the apparent warmth of the 
current warm period – compare the “raw” and 
“adjusted” versions of “GHCN v3, all”, “GHCN v4, 
all” and “Li & Xu records”. 
As Li et al. (2017) have already noted, the use of 

homogenized datasets brings the estimates more in line with 
the computer model-based hindcasts. If the hindcasts are 
reliable then this would suggest that the homogenized 
datasets are more reliable. On the other hand, the use of 
homogenized datasets also brings the estimates more in line 
with the urbanized subsets than the rural subsets. This is 
consistent with Soon et al. (2015)’s argument that the 
current homogenization approach leads to urban blending 
for the Chinese temperature series.  

At any rate, although in general homogenization 
appears to reduce the relative warmth of the early period 
and increase the relative warmth of the recent period, other 
factors seem to be involved in determining the relative 
warmth of the two periods, e.g., reducing the number of 
urban stations seems to increase the relative warmth of the 
early 20th century. For instance, if we consider the relative 
warmth of the early period, the 3rd warmest of the 16 series 
was a homogenized series (i.e., the CRUTEM3). On the 
other hand, the 2nd coldest was a non-homogenized series 
(i.e., the most urban GHCN v4 subset).  

It is unclear why the change from version 3 to version 
4 of the GHCN dataset has reduced the apparent warmth of 
the early 20th century warm period and increased the 
apparent warmth of the current warm period. However, it is 
worth noting that most of the changes introduced by version 
4 seem to be for the post-1951 period (and particularly post-
1990). So, while version 4 has significantly increased the 
amount of available data for the current warm period, the 
data available to assess the early 20th century warm period is 
still relatively limited. 

Tang & Ren (2005) noted that before 1950, there was 
no unified time of observation for China, and this might 
have introduced non-climatic “time of observation biases” 
into the raw data for the early 20th century. So, it is worth 
considering whether this could have led to an 
overestimation or underestimation of the warmth of the 
early 20th century warm period. Tang & Ren attempted to 
reduce the magnitude of any such time of observation biases 
in the raw data by using the average of maximum and 
minimum temperature series instead of using the standard 
mean temperature series. Others have suggested that using 
homogenized temperature records should have reduced 
these biases, e.g., Li et al. (2017). 

As noted earlier, the effects of homogenization on 
Chinese temperature estimates is generally to reduce the 
relative warmth of the early period and increase the relative 
warmth of the recent period. This has led some groups to 
conclude that the net effect of the various non-climatic 
biases (e.g., time of observation bias) on the early 20th 
century was to exaggerate the warmth of the early warm 
period, e.g., Li et al. (2017). However, if Soon et al. (2015) 
are correct and the homogenization has been affected by 
urban blending, then this would provide an alternative 
explanation.  

In theory, we might get some idea of the potential 
impact of time of observation biases on the early 20th 
century warm period by comparing the homogenized series 
and Tang & Ren series to the raw series. Comparing the 
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Tang & Ren series to the Wang et al. (2004) series which 
was based on raw data, we see that the Tang & Ren 
approach has apparently reduced the warmth of the 1920s, 
but both series have a relatively warm 1940s period. Indeed, 
the peak year (1946) is slightly warmer in the Tang & Ren 
series. Moreover, the peak warmth of the 1940s period for 
the Wang et al. (2004) series is actually ranked quite low in 
our list (12 out of 16), and several homogenized series have 
a warmer 1940s peak. Therefore, while it is possible that 
some of the apparent warmth of the 1920s in the raw series 
may be due to time of observation biases, this does not seem 
to explain the 1940s warm period. 

3.5. Comparison of temperature proxy 
reconstructions for Chinese regions 

Temperature proxies are essential for studying Chinese 
temperature trends on multi-decadal and centennial 
timescales, since instrumental records are relatively short. 
For this reason, in the last decade or so, there have been 
considerable advances within the field of paleoclimate 
within China, e.g., see Ge et al. (2016) for a recent review. 
Using temperature proxies, several of us have suggested 
elsewhere that Chinese temperatures may have been 
comparable to the recent warm period approximately 1,000 
years ago, during the “Medieval Warm Period”, e.g., Ge et 
al. (2013b, 2017), Yan et al. (2015). However, in this paper, 
we will confine our analysis of Chinese temperature proxy 
series to temperature trends since the 19th century. 

Figure 11 compares different temperature proxy series 
for three regions in China (central China, northeast China 
and the Tibetan Plateau) as well as five multiproxy 
reconstructions for all of China. As discussed in Section 2.6, 
different types of proxies are presented for each of the three 
regions, and proxies for different seasons are included. 

All of the proxy series suggest there have been 
considerable changes in regional temperatures since the 19th 
century. However, on these relatively short time-scales, 
there seem to be considerable inconsistencies between the 
temperature fluctuations implied by each of the proxy series 
– even for the same regions. In particular, there are notable 
differences between individual series on the timing, length 
and magnitude of different warm and cold periods. 
Although most of the proxy series suggest the existence of 
relatively warm periods for both the recent period and the 
early 20th century, the relative warmth of the two periods 
varies between proxies. Also, in some cases, one of other of 
the warm periods seems to be absent. Unfortunately, this 

makes it challenging to use temperature proxies for directly 
comparing the early 20th century and current warm periods.  

Part of the reason for these inconsistencies could be 
due to genuine differences between the climatic trends for 
different regions. However, inconsistencies also exist within 
individual regions. For instance, for central China, while Yi 
et al. (2012) implies that the early 20th century warm period 
was hotter than the current warm period, Tan et al. (2013) 
implies the opposite result, and Chen et al. (2014) suggests 
that neither warm period was particularly noteworthy. 
Similarly, for the Tibetan Plateau, both Fan et al. (2010) and 
Shi et al. (2016) imply that the early 20th century warm 
period was warmer, while Wang et al. (2015) implies a 
slightly warmer current period and Yang et al. (2008) 
implies that the 1920s-40s included a lot of relatively cold 
years.  

Another factor which could be involved is the 
differences between seasons. In our analysis of the 
instrumentally-based series in the previous section, we were 
considering the annual mean temperature trends. However, 
most temperature proxies are typically for one particular 
season, e.g., summer or winter, and climatic trends can 
sometimes be different for different seasons, e.g., (Li et al., 
2015; Sun et al., 2017b; Yan et al., 2015; Kawakubo et al., 
2017). On the other hand, we can see that, even for the same 
region and season, different proxies can imply different 
trends. For example, three of the four Tibetan Plateau proxy 
series in Figure 11 are summer temperature proxies. 

An additional factor which can influence the relative 
warmth of the different periods is the reconstruction method 
applied. Zheng et al. (2015) have applied two alternative 
reconstruction methods to the same multi-proxy series for a 
region in northwest China (Xinjiang). Using a fairly 
standard reconstruction method yielded a reconstruction that 
agreed there had been warming since the 1970s, but 
suggested the 1930s-40s were a relatively cold period, and 
that it was about as warm in the mid-19th century as at the 
end of the 20th century. On the other hand, when they 
applied an alternative reconstruction method which 
separated the low-frequency and high-frequency 
components of the proxy data, their reconstruction 
suggested a relatively warm 1930s-40s period, and also 
reduced the warmth of the mid-19th century, while 
increasing the warmth of the recent warm period. 

Differences between alternative reconstruction 
methods are also apparent (although less dramatically so) by 
comparing the Ge et al. (2017) “PLS” and “PCR” 
reconstructions for all-China in Figure 11. Both 
reconstructions used the same proxy dataset, but the PCR 
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method implies a slightly warmer and longer early-20th 
century warm period, as well as a warmer late 19th century 

than the PLS method.  

 

Figure 11. Examples of various temperature proxy reconstructions for three regions in China (Central, Northeastern and Tibetan 
Plateau) and for all China. When error bars were provided, these are indicated with gray curves. All reconstructions are shown 
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relative to their 20th century mean (1901-2000). Values above and below that mean are highlighted with red and blue shading, 
respectively. 

 
So before temperature proxies can be satisfactorily 

used to address this specific issue, more research is 
probably required to understand the reasons for these 
differences. Ge et al. (2016) have highlighted several issues 
in which further research is needed, as well as summarising 
the many advances which have been made in the last 10 
years. 

4. Conclusions 
In this collaborative paper, we analysed and reviewed 

some of the main reasons why there is such ongoing debate 
over how the early 20th century warm period (1920s-1940s) 
compared to the current warm period (1990s-present) in 
China.  

Most Global Climate Model (GCM) hindcasts are 
currently unable to simulate the early 20th century warm 
period (Li et al., 2017; Zhou & Yu, 2006; Guo et al., 2013). 
This has led some to suggest that its apparent warmth has 
been overestimated (perhaps due to non-climatic biases), 
e.g., Li et al. (2017). On the other hand, Soon et al. (2011, 
2015) have argued that both warm periods and the 
intervening cool period can be explained almost entirely in 
terms of natural climate change. 

There is general agreement that there are individual 
stations in China from highly urbanized areas such as 
Beijing (Ren et al., 2007; Zhang L. et al., 2014; Zhang Y. & 
Ren, 2014; Yan et al., 2010; Wang et al., 2013) which are 
significantly affected by urbanization bias, and that this has 
introduced a warming trend bias into their station records. 
However, there is considerable ongoing debate over the 
exact extent to which urbanization bias has affected 
estimates of national temperature trends.  

In this study, we assessed the extent of urbanization 
bias among the Chinese component of the new, 
substantially revised, version of the Global Historical 
Climatology Network (version 4, currently in beta 
production). We found that urbanization bias substantially 
altered the apparent relative warmth of the two periods. 
Specifically, the more that urban stations were removed 
from the analysis, the warmer the early 20th century warm 
period became, and the cooler the recent warm period 
became.  

Some groups have argued that the application of 
statistically-based homogenization procedures such as 
Menne & Williams (2009) has substantially reduced the 

magnitude of urbanization biases and other non-climatic 
biases in the data, e.g., (Xu et al., 2017; Yan et al., 2016; 
Wang J. & Yan, 2016). Others have argued that 
urbanization biases are still a problem after homogenization, 
e.g., (Ren et al., 2008, 2015, 2017; Ren & Ren, 2011; He & 
Jia, 2012; He et al., 2013; Ge et al., 2013a; Yang et al., 
2013; Yang et al., 2011; Soon et al., 2015). Meanwhile, 
Soon et al. (2015) have argued that these homogenization 
procedures are inadvertently introducing substantial 
warming biases into the Chinese records through urban 
blending. We provided a theoretical description of why this 
blending problem occurs (Sec. 3.2.3); a case study of the 
problem for the Beijing area (Sec. 3.2.4); and some 
suggestions of how to reduce the problem (Sec. 3.2.5) in 
Section 3.2. 

Although version 4 of the GHCN dataset has increased 
the amount of data for both the early and recent warm 
periods, the available data before about 1954 is still quite 
limited. This is an even bigger problem for rural stations. 
For this reason, the ACRE China project which aims to 
recover and digitize more of this early 20th century data for 
China is particularly important (Williamson et al., 2017).  

Another possible approach to overcoming this 
shortage would be to supplement the limited instrumental 
records with temperature proxy series, for instance, as had 
been done by Wang S. et al. (2001, 2004). Additionally, 
these proxy series could then be used for extending our 
estimates of Chinese temperature trends back into the pre-
instrumental era, e.g., Wang S. et al. (2007). Unfortunately, 
an analysis of a sample of 12 temperature proxy series 
(taken from three separate regions in China) reveals that 
there are still a lot of inconsistencies between individual 
proxy series. Therefore, more research into resolving the 
reasons for these inconsistencies is recommended. 

In this review, we mostly focused on annual mean 
temperatures averaged over all of China. However, 
temperature trends often vary from season to season, e.g., 
(Li et al., 2015; Sun et al., 2017b). Also, different regions 
within China often show different climatic trends, e.g., Sun 
et al. (2017b) found a very pronounced “hiatus” for 
northeast China, but Yan & Liu (2014) found none for the 
Tibetan Plateau. Therefore, it is also important to consider 
seasonality and regionality. 

We have identified several key questions with regards 
to the current and early 20th century warm periods in China 
which have still not been satisfactorily resolved: 
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• Is the apparent warmth of the 1920s-40s in China 
merely an artefact of non-climatic biases in the 
observational data, as suggested by Li et al. 
(2017)? 

• If not, and the 1920s-40s warmth was genuine, 
then why are most of the current GCMs unable to 
reproduce it? Zhou & Yu (2006) and Soon et al. 
(2011, 2015) have suggested that the current 
GCMs may be significantly underestimating 
natural climate changes. 

• Similarly, for the current warm period, has there 
been a “warming hiatus” (Li et al., 2015; Chen & 
Zhai, 2017; Sun et al., 2017b; An et al., 2017; Yan 
& Liu, 2014; Duan & Xiao, 2015) in recent 
decades, and if so, why? 

• Are these apparent discrepancies between 
observations and modelled Chinese temperatures 
only a regional phenomenon for China? If so, 
what are the explanations for these regional 
variations? Zhou & Yu (2006), Soon et al. (2011) 
and Li et al. (2015) amongst others have 
suggested some possible explanations which 
might be worthy of further research.  

• Alternatively, are these phenomena global (or at 
least hemispheric) in nature? Both Sun et al. 
(2017a) and Soon et al. (2015) have noted that the 
global temperature data before ~1940s is 
unfortunately quite limited, and might be 
substantially affected by non-climatic biases such 
as urbanization bias. Moreover, Soon et al. (2015) 
have argued that, after accounting for urbanization 
biases,  similar 1920s-40s warm periods were 
observed across the entire northern hemisphere. 
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