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1. Introduction 
From a cursory reading of Li & Yang’s comments [Li & Yang, 2019, henceforth LY2019] on our recent 

review article, Soon et al. (2018) [henceforth S2018], some readers might think that LY2019 is 

somehow disputing our analysis and conclusions. Specifically, they claim to offer “some comments 

on the arbitrary or deductive conclusions of Soon et al. (2018) as [sic.] the following five aspects…” 

They then make some comments on the following five issues: 

1. “On the representativeness of climate analysis” 

2. “On the observational data from meteorological stations” 

3. “On the comparisons of proxy data, model reanalysis data and instrumental observation data” 

4. “On the mixture of homogenization process and urbanization” 

5. “On the contribution of urbanization to the regional SAT series and its change” 

If a reader had not read S2018, and only had read LY2018, they might mistakenly assume that 

LY2018 completely disagree with us. However, a careful comparison of LY2019 and S2018 reveals 

that Li and Yang apparently agree with most of our conclusions. That said, there are several points 

where LY2019 appear to disagree with us. Mostly this seems to be due to minor mistakes or 

misunderstandings by LY2019. However, in two cases, the reasons for the apparent disagreement 

are more complex, i.e.,  

(a) What is the relationship between the ensemble means of Global Climate Model (GCM) 

hindcasts of Surface Air Temperature (SAT) and observed SAT trends? 

(b) How does statistical homogenization lead to the blending problem described by us in S2018? 

With that in mind, the rest of this reply will be divided into four parts: 

• Section 2. Points where LY2019 agree with us 

• Section 3. Minor mistakes and misunderstandings made by LY2019 
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• Section 4. Comparing climate model temperature hindcasts to observations 

• Section 5. Comments on the blending problem of homogenization 

2. Points where LY2019 agree with us 
One of the goals of S2018 was to raise awareness of the many challenging, inter-related factors 

involved in trying to evaluate the available data on Chinese SAT trends since the late-19th century. 

LY2019 agree with us, and they join us in our call by reminding the scientific community that “[i]t is 

imperative that [researchers understand] the data sources, uncertainty, biases and other limitations 

of any data that they used.” In fact, they want to emphasise that as well as the many factors we 

discussed in detail, there are others which were beyond the scope of our review. 

For instance, as we explained in the conclusions of S2018, 

“In this review, we mostly focused on annual mean temperatures averaged over all of China. 

However, temperature trends often vary from season to season […] Also, different regions 

within China often show different climatic trends […] Therefore, it is also important to 

consider seasonality and regionality.” 

LY2019 agree with our recommendation to also consider the effects of regionality. In particular, in 

their Section 1.1., they suggest that the trends of the western and eastern regions should be 

compared and contrasted.   

LY2019 agree with us that there are multiple different instrumentally-derived estimates of Chinese 

temperature trends and that depending on “…the collection and processing methods of 

meteorological data, a certain degree of differences in the analysis results are inevitable”. In their 

Section 1.2., they briefly summarise some of these differences, but if the reader is interested in a 

more comprehensive review of these differences, we recommend re-reading Section 2 of S2018. 

In their Section 1.3., they also agree with us that there are, “…large uncertainties in proxy series for 

exploring a warm early-20th century period and a warm recent period”  and that, “…many more in-

depth researches are needed…” (LY2019) to explain the differences between the various proxy 

estimates. For a more detailed discussion of this point, we refer the interested reader to Section 3.5 

of S2018. 

3. Minor mistakes and misunderstandings made by LY2019 
LY2019 claim that we, “[…] concluded that both limits of long-term observations in rural areas and 

urbanization bias mainly led to the results that the recent warm period seemed much warmer than 

the earlier warm period […]” [emphasis added in bold]. We did not make this specific claim, since 

each of the authors of S2018 has different opinions on the relative weight of each of the factors 

involved in this challenging topic. As we explained in S2018,  

“In this collaborative paper, each of us has different views on this contentious issue. 

Specifically, while some of us have argued that the early 20th century warm period was 

comparable to the recent warm period for China[…], some of us have argued that the recent 



warm period is much warmer […]. Therefore, we believe it is important to establish and 

assess the reasons for these differing views.” 

In their Section 1.2, LY2019 claim that there are “only about 200 stations totally in China” in both 

version 3 and version 4 of the Global Historical Climatology Network (GHCN) dataset. We do not 

know where they got this estimate from since we explicitly noted that there are 417 Chinese stations 

in version 3 and 494 in version 4. For comparison, the CRUTEM dataset (which Li had specifically 

recommended to us when we shared an early draft of S2018 with him) only contained 160 stations 

in version 3, but now contains 703.  

Speaking of the CRUTEM datasets, LY2019 also argue in their Section 1.2 that simply by processing 

the CRUTEM4 data in a different manner, you can obtain a very different estimate for China. They do 

not describe exactly how they processed the data (the process we used is described in Section 2 of 

S2018), but if they are correct then this adds further support to our recommendations. 

In their Section 1.5, LY2019 propose a rather simplistic analysis to estimate “the contribution of 

urbanization to the regional SAT series”. They argue the magnitude of urbanization bias can be 

estimated from Table 1 of S2018 as follows: 

1. Subtract the peak annual temperature of the early 20th century warm period (1946) from the 

peak annual temperature in the current warm period (1998 or 2007). 

2. Divide this difference by either 2 or 3 depending on whether the recent peak occurred in 

1998 or 2007 respectively. 

3. According to LY2019, this is the “Estimated urbanization effects” in °C/10a. 

LY2019 construct their own Table 1 calculating estimates from the values of 14 of the 16 series in 

our Table 1, dropping the CRUTEM3 series and replacing the CRUTEM4 series with their own version. 

For some reason, they seem to have also included the wrong values for two of the remaining 14 

series, i.e., Tang & Ren (2005) and Wang et al. (2004).  

We disagree with this analysis. Why do LY2019 assume that the only difference between the two 

peak years is urbanization bias? Also, urbanization bias is usually a persistent long-term multi-

decadal phenomenon, so using a direct comparison of two individual years is simply inappropriate. 

LY2019 refer to their proposed analysis as a “mistaken contribution of urbanization”. We agree such 

an analysis would be mistaken. 

4. Comparing climate model temperature hindcasts to observations 
S2018 presented 14 different time series of Chinese SAT derived from meteorological observations. 

For comparison, we also presented two equivalent series which were based on GCM hindcasts 

(provided to us by Li). One series was the multi-model ensemble average of all 42 CMIP5 hindcasts 

for China. The CMIP5 hindcasts were the ones used for the IPCC 5th Assessment Report (AR5). 

In their Section 1.3, LY2019 claim that directly comparing the CMIP5 ensemble averages to the 14 

series “…is unreasonable and insignificant statistically”. However, they immediately contradict 

themselves and make a similar comparison only using just one of the 14 series. This time, where the 

comparison is more favourable to them, they insist that it “enhance[s] the confidence level for SAT 

analysis from both CMIP5 ensemble and the observations”.  



The contradiction seems to arise from the inherent conflict between two different schools-of-

thought within the scientific community. The existence of these two different camps is often 

unappreciated, and therefore in this section it may be helpful to elaborate on the rationales of the 

two camps (see also the discussion in Connolly et al., 2019). At the end of the section, we will show 

that whichever school-of-thought you favour, LY2019 were still wrong in their Section 1.3 to dismiss 

the significance of the comparison between observed trends and the CMIP5 multi-model ensemble 

average hindcast. 

The two different schools-of-thought occur because with current GCM hindcasts, if the simulation 

run is adequately equilibrated and not majorly affected by drift, then the global temperatures for a 

given year are mostly determined by three factors: 

1. External Radiative Forcing (RF) from “Anthropogenic” factors. Many of these factors are 

considered, but greenhouse gas and aerosol concentrations are the main two. 

2. External Radiative Forcing from “Natural” factors. Currently, only two of these are 

considered, i.e., changes in Total Solar Irradiance (“solar”) and stratospheric aerosols from 

volcanic eruptions (“volcanic”). 

3. Internal variability. This is the year-to-year random fluctuations in a given model run. 

The GCMs are effectively only able to simulate multi-decadal trends using the first two factors. 

However, because the random year-to-year “internal variability” fluctuations vary between models 

and individual runs, if one plots all of the individual model runs on top of each other, e.g., as a 

“spaghetti plot”, the thicker “envelope” is more likely to encompass a time series of observations 

than a comparison with the ensemble mean. 

One school-of-thought argues that this “internal variability” is essentially “noise”, and that by 

averaging together the results you can improve the signal-to-noise ratio, e.g., Douglass et al. (2007). 

However, the other school-of-thought disagrees and argues that this is a feature which can 

somehow approximate the “internal variability” of nature, e.g., Santer et al., (2008). Both camps 

agree that, because the random fluctuations are different for each model run, they tend to cancel 

each other out in ensemble averages.  

We suggest that both schools-of-thought have some validity and should be considered.  Despite 

LY2019’s claim that the ensemble average “…is unreasonable and insignificant statistically”, we 

argue that using the ensemble averages is better for describing the influence of the external 

radiative forcing factors, and that these are more relevant for studying multi-decadal trends.  



 

Figure 1. Histograms showing the difference between the early warm peak (maximum in the 1901-1950 period) and the 
recent warm peak (maximum in the 1951-2017 period) for all CMIP5 simulation runs (using RCP4.5 scenario for post-
2005 projections). 

Nonetheless, let us consider the inter-model variability. For S2018, we used the averages for each of 

the 42 models that submitted hindcasts to the CMIP5 project. These hindcasts covered the period 

1861-2005. However, some of the modelling groups submitted multiple runs for each model (e.g., 

CSIRO-Mk-3-6-0 submitted 10 runs), and in those cases, our analysis (which used the same data as Li 

et al., 2017 – provided to us by Li) was based on the average of the multiple runs. Also, the 

modelling groups also projected these hindcasts into the future using a range of scenarios (RCP2.6, 

RCP4.5, RCP6.0 and RCP8.5). Therefore, we downloaded from KNMI’s ClimExp website 

(https://climexp.knmi.nl/) all 108 of the individual model runs and used the RCP4.5 projections to 

extend our analysis up to 2017. [We chose RCP4.5 as this was the most popular scenario submitted, 

but at any rate most of the differences between the four scenarios occur after 2017]. 

To sort the 108 model runs, we calculate the differences for each model run between the maximum 

temperature over the 1901-1950 period and the maximum temperature over the 1951-present (i.e., 

2017) period. This crude, yet simple, metric allows comparison with part of the discussion in S2018. 

Figure 1(a) shows that the mean value of this metric was 0.83°C, i.e., the recent warm peak was 

https://climexp.knmi.nl/


0.83°C warmer than the early-20th century peak. However, the exact value varied from model to 

model. 

 

Figure 2. Comparison of (a) the CMIP5 multi-model ensemble mean to (b)-(d) three individual CMIP5 simulation runs. 

As an aside, we briefly note that much of the spread in the histogram can be traced to one specific 

modelling group, NASA GISS, who submitted nearly 1/3 of the model runs. All of their model runs 

used a version of their GISS-E2 model. The differences between the 34 GISS-E2 model runs (Figure 

1b) and the other 74 model runs (Figure 1c) are quite pronounced.  

At any rate, in Figure 2, we compare the ensemble average (Figure 2a) to three of the 108 individual 

model runs (Figure 2b-d). The ensemble mean indeed removes most of the inter-annual variability of 

individual runs, making the average a lot “flatter” (this also makes the difference between the two 

peak years larger, i.e., +1.08°C). However, for runs where the difference between the two peaks is 

large, there is almost no “early 20th century warm period”, i.e., the same finding as for the ensemble 

mean. Zhou & Yu (2006) had noticed this for the earlier CMIP3 hindcasts for China. Meanwhile, for 



runs where the difference between the peaks is small (e.g., Figure 2b), the recent warming is 

considerably muted, and not especially unusual. 

 

Figure 3. The various external "radiative forcings" estimates considered by the CMIP5 Global Climate Model hindcasts. 
Taken from IPCC AR5 Working Group 1 (Myhre et al., 2013). 

Let us now consider the radiative forcing components used by the CMIP5 models – see Figure 3. Of 

the two “natural forcings” considered by the CMIP5 models, only the solar forcing could potentially 

introduce a multi-decadal warming trend, since the volcanic forcing (Figure 3c) only acts to introduce 

short 2-3 year cooling events. However, in Soon et al. (2015), some of us showed that the Wang et 

al. (2005) solar forcing dataset (or similar equivalents) used by the CMIP5 are very low variability 

estimates (Figure 3b).  

This low variability is reduced even further in the IPCC AR5’s dataset since they use a combined 

“albedo factor” of 0.55, i.e., they scale the original dataset by 0.70 (assuming an albedo of 30%) and 



then by an additional 0.78 to account for “wavelength-albedo dependence” (Myhre et al., 2013; 

Section 8.4.1, p688). 

 

 

Figure 4. Comparison of the main "Solar radiative forcing" estimate used by the CMIP5 hindcasts (i.e., Wang et al., 2005) 
to an alternative estimate of solar radiative forcing (i.e., Hoyt & Schatten, 1993) that is at least as plausible. 

Soon et al. (2015) argued that the CMIP5 modelling groups should have considered a range of the 

various available plausible solar variability datasets, rather than only considering the low variability 

ones. Figure 4 compares the Wang et al. (2005) dataset to another solar forcing dataset (Hoyt & 

Schatten, 1993) that is at least as plausible (Scafetta & Willson, 2014; Soon et al., 2015). 

The choices made by GCM modelling groups as to which radiative forcing datasets directly influence 

the model output, as can be seen from Figure 5, in which different estimates of Chinese SAT are 

fitted to various combinations of “anthropogenic” and “natural” radiative forcing datasets, using a 

linear least squares best fit rescaling.  

Figure 5a shows that the CMIP5 multi-model ensemble mean for China almost exactly overlaps with 

the combined “anthropogenic and natural forcings” dataset of Figure 3(d). In other words, the 

average Chinese temperature trends hindcasted by the CMIP5 models is determined almost entirely 

by the choice of forcing datasets used by the modelling groups.  



This has profound implications for our understanding of the relative role of natural and 

anthropogenic factors in Chinese temperature trends since the 19th century, as well as in our 

assessment of the relative warmth of the various warm periods. For instance, while the Li et al. 

(2017) series (with a relatively modest 1940s warm period) is fairly well described using the IPCC’s 

“anthropogenic forcings” (Figure 5b), the S2018 relatively rural series is fairly well described using 

the Hoyt & Schatten (1993) solar forcing dataset (Figure 5c). In other words, depending on which 

SAT series and which forcing datasets are used, you could come to completely different conclusions 

on whether Chinese temperatures since the 19th century were mostly determined by “anthropogenic 

factors” (Figure 5b) or “natural factors” (Figure 5c).  

This builds on LY2019’s point that “[u]nderstanding the long-term variation in surface air 

temperature related to climate warming is one of the important issues for understanding the 

regional and global climate change and its detection, attribution and impact”. That is, we agree with 

LY2019 that it is important to understand “the data sources, uncertainty, biases and other limitations 

of [the various Chinese surface air temperature datasets]” – indeed, that was the primary motivation 

of S2018. But, further, we should also be aware of the considerable debate over the various 

radiative forcings datasets that have been used for the “attribution” of surface air temperature 

trends. We recommend Soon et al. (2015) for a comprehensive review of the ongoing debate over 

the solar radiative forcing datasets. 

 

Figure 5. Comparison of three of the estimates of Chinese SAT considered in Soon et al. (2018) with various "radiative 
forcing" estimates. 



5. Comments on the blending problem of homogenization 
In their Section 1.4, LY2019 admit to being confused about the blending problem of the current 

homogenization processes. LY2019 briefly summarises the rationale of homogenization, but for 

those who want to gain a more comprehensive understanding of the process, we refer the 

interested reader to Section 3.2 of S2018 and the references cited therein. Unfortunately, LY2019 do 

not appear to have considered the blending problem associated with the current homogenization 

processes, which we described in Sections 3.2.3-3.2.5. We appreciate that the blending problem has 

been largely overlooked in the literature until S2018, and therefore it may be useful to provide some 

additional insights here. To understand the blending problem, it is important to distinguish between 

two separate stages of the homogenization process: 

1. Identifying when a non-climatic step change bias occurred 

2. Establishing (and adjusting for) the sign and magnitude of the bias 

In the first stage, the main challenge is in minimising the number of false positives and false 

negatives, while maximising the number of true positives and true negatives. As LY2019 note, many 

of the current homogenization procedures perform quite well at this stage when tested with 

simulated and/or synthetic biases, e.g., Venema et al. (2012). We agree, but point out that those 

tests did not consider the urban blending problem (personal communication with Venema, 2017). 

Often the homogenization process is carried out in the absence of any information about 

documented changes in the station location, instrumentation, etc., which the station observers 

record in accompanying station histories (sometimes called “station metadata”). This is the case with 

the widely-used GHCN dataset which we used for much of our analysis. However, while the CMA 

have access to such “station metadata” and used this in the Li et al. (2017) homogenization process, 

they have not yet provided public access to this important information, or to the homogenization 

adjustments they applied.  

In October 2017, we invited Li to share this station metadata with us and/or collaborate with us to 

try and assess the accuracy of the GHCN homogenization adjustments with regards to this first stage. 

We repeat this invitation to Li and colleagues if they are interested in helping us to advance the 

scientific understanding on this important issue.  

Nonetheless, the blending problem arises from the second stage and not from the first stage. All of 

LY2019’s comments on the homogenization process (in their Section 1.4) relate to the first stage. In 

S2018 we showed that the blending problem is a real statistical artefact. This is also confirmed by 

the statistical experiments of deGaetano (2006) and Pielke et al. (2007).  

That said, quantifying the extent of the problem for a given region, such as China, is more 

challenging. In S2018 we showed that the problem was indeed substantial for a sample of 10 

stations in the Beijing area which had been homogenized by He & Jia (2012) apparently using the 

same station history information endorsed by LY2019. However, the Beijing area is a highly 

urbanized region of China, and it is still unknown how large the problem is for the rest of China. 

In Figure 6, we plot the net gridded mean of the homogenization adjustments applied by NOAA to 

the two most urbanized subsets (Figure 6a) and the other three subsets (Figure 6b). Qualitatively, 

the long-term trends are consistent with urban blending being be a significant problem. That is, 



homogenization partially reduces the warming trends of the most urban stations, but it introduces 

extra warming into the more rural stations.  

However, when we consider the period before the 1950s (and to a lesser extent, after 1990), we can 

see that there is a considerable drop-off in station numbers for both the most urban (Figure 6c) and 

the least urban (Figure 6d) subsets. Moreover, the station numbers fluctuate from decade-to-decade 

(and even year-to-year). That is, the stations used for calculating the average Chinese temperature - 

as well as the stations used for homogenization - vary substantially over the years. As a result, we do 

not attempt to quantify here the extent of the blending problem for Chinese temperature estimates 

based on homogenized data. Rather, we merely note that the problem is real and insidious, and 

recommend further research to investigate its extent. 



 

Figure 6. Gridded mean homogenization adjustments applied by NOAA to the 494 Chinese stations in version 4 of the 
Global Historical Climatology Network (GHCN) dataset. 
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