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ABSTRACT 

In order to reduce the amount of non-climatic biases of air temperature in each weather 

station’s record by comparing it to neighboring stations, global land surface air temperature 

datasets are routinely adjusted using statistical homogenization to minimize such biases. 

However, homogenization can unintentionally introduce new non-climatic biases due to an 

often-overlooked statistical problem known as “urban blending” or “aliasing of trend biases”. 

This issue arises when the homogenization process inadvertently mixes urbanization biases of 

neighboring stations into the adjustments applied to each station record. As a result, 

urbanization biases of the original unhomogenized temperature records are spread throughout 

the homogenized data. To evaluate the extent of this phenomenon, the homogenized 

temperature data for two countries (Japan and United States) are analyzed. Using the 

Japanese stations in the widely used Global Historical Climatology Network (GHCN) dataset, 

it is first confirmed that the unhomogenized Japanese temperature data are strongly affected 

by urbanization bias (possibly ~60% of the long-term warming). The United States Historical 

Climatology Network dataset (USHCN) contains a relatively large amount of long, rural 

station records and therefore is less affected by urbanization bias. Nonetheless, even for this 

relatively rural dataset, urbanization bias could account for ~20% of the long-term warming. 

It is then shown that urban blending is a major problem for the homogenized data for both 

countries. The IPCC’s low estimate of urbanization bias in the global temperature data based 

on homogenized temperature records may have been biased low due to urban blending. 

Recommendations on how future homogenization efforts could be modified to reduce urban 

blending are discussed. 

SIGNIFICANCE STATEMENT 

Most weather station-based global land temperature datasets currently used a process 

called “statistical homogenization” to reduce the amount of non-climatic biases. However, 

using temperature data from two countries (Japan and United States), we show that the 

homogenization process unintentionally introduces new non-climatic biases into the data due 

to “urban blending” problem. Urban blending arises when the homogenization process 

inadvertently mixes the urbanization (warming) bias of the neighboring stations into the 

adjustments applied to each station record. As a result, the urbanization biases of the 

unhomogenized temperature records are spread throughout all of the homogenized data. The 
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net effect tends to artificially add warming to rural stations and subtract warming from urban 

stations until all stations have about the same amount of urbanization bias. 

1. Introduction

Regional and global land surface air temperature (LSAT) trends are routinely calculated

using thermometer records from weather stations (Lawrimore et al. 2011; Menne et al. 2018). 

However, weather station records are often affected by non-climatic biases (Karl and 

Williams 1987; Mitchell 1953; Pielke et al. 2007;  Soon et al. 2015; Soon et al. 2018) due to, 

e.g., station moves (Karl and Williams 1987; Ren et al. 2015; Soon et al. 2015), changes in

instrumentation (Quayle et al. 1991; Hubbard and Lin 2006) or thermometer screen (Nordli et 

al. 1997), changes in time of observation (Karl et al. 1986; Balling and Idso 2002; Vose et al. 

2003), changes in the immediate surroundings of the weather station, i.e., “micro-climate” 

(Fall et al. 2011; Menne et al. 2010), and changes in the local climate that are 

unrepresentative of regional trends such as the growth of urban heat islands (Fukui 1957; 

Karl et al. 1988; Oke 1973; Stewart 2019). 

The last type of non-climatic bias is often referred to as “urbanization bias” and has been 

particularly challenging for at least two reasons: 1) many thermometer records have 

experienced at least some urbanization over the last century, especially the longest records 

and 2) it is typically a warming bias―unlike most non-climatic biases that can be of either 

sign. Hence, many studies over the years have warned that at least some of the apparent long-

term warming in both global and/or regional temperature estimates could be an artefact of 

urbanization bias (Connolly et al. 2021; Fujibe 2009; Fujibe and Ishihara 2010; Fujibe 2011, 

2012; Fukui 1957; Karl et al. 1988; Oke 1973; Ren et al. 2015; Ren and Ren 2011; Scafetta 

2021; Shi et al. 2019; Soon et al. 2015, 2018; Zhang et al. 2021). However, other studies have 

disputed this claim and argued urbanization bias is a relatively minor issue (Das et al. 2011; 

Efthymiadis and Jones 2010; Hansen et al. 2001, 2010; Hausfather et al. 2013; Parker 2006; 

Peterson et al. 1999; Wickham et al. 2013).  

The Intergovernmental Panel on Climate Change (IPCC) chose the latter side of this 

dispute for its most recent 6th Assessment Report (AR6) and argued that it is “unlikely” that 

urbanization bias accounts for more than 10% of global LSAT trends (IPCC 2021), although 

conceding the problem might be larger for some regions, e.g., eastern China (Shi et al. 2019). 
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However, several studies disagree with this optimistic assessment (Connolly et al. 2021; 

Scafetta 2021; Soon et al. 2015; Soon et al. 2018; Zhang et al. 2021). 

Evaluating the contribution of urban warming to a temperature record is a challenging 

problem – especially given the non-uniform nature in which urbanization takes place over 

timescales of decades to centuries. Some researchers have emphasized the point that for older 

urban areas (e.g., European cities) much of the growth in the magnitude of its urban heat 

island might have occurred earlier (Jones et al. 2008) than more modern cities (e.g., some 

Southeast Asian cities). Also, the urban heat island of stations located in metropolitan park 

areas might be reduced by the “park cool island” effect (Jones et al. 2008), although this 

effect is relatively modest in highly urbanized areas (Gaffin et al. 2008). Stewart (2011) has 

highlighted many of these challenges and problems, while Stewart and Oke (2012) 

recommend researchers use more nuanced “local climate zones” for evaluating urban 

warming trends. 

At any rate, to try and reduce the problems of non-climatic biases, several groups have 

developed statistical “homogenization” techniques to identify and correct for non-climatic 

biases in the temperature records by comparing each station record to those of neighboring 

stations (e.g., Domonkos 2021; Easterling and Peterson, 1995; Karl and Williams 1987; 

Menne and Williams 2009; Mestre et al. 2013). Nowadays, most LSAT datasets used for 

climate research include a version that has been homogenized using one of these statistical 

homogenization programs. In the case of NOAA’s Global Historical Climatology Network 

(GHCN) datasets (Lawrimore et al. 2011; Menne et al. 2018), that we will be analyzing in 

this study, Menne and Williams (2009)’s “Pairwise Homogenization Algorithm” (PHA) is 

used. 

Clearly, if the homogenization process successfully removed most of the non-climatic 

biases, while retaining the true climatic trends, then these homogenized records would be 

more suitable for studying climatic trends than the unhomogenized records. As a result, most 

LSAT estimates explicitly and exclusively rely on homogenized records (Lenssen et al. 2019; 

Menne et al. 2018; Osborn et al. 2021; Sun et al. 2022; Vose et al. 2021). However, while 

initially this might seem reasonable, it is important to remember homogenization techniques 

are merely statistical attempts to try to improve the reliability of the data. 

The hope is that a given homogenization technique correctly identifies and removes any 

non-climatic biases; does not overlook any remaining biases; and does not inadvertently add 
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additional biases. However, given that the motivation for homogenizing the data is that there 

are a large number of unidentified and unquantified biases in the original data, evaluating the 

reliability of a homogenization technique by merely comparing the homogenized and 

unhomogenized data is somewhat similar to “pulling oneself up by one’s boot straps”. 

Therefore, most assessments of the reliability of a given homogenization technique have used 

synthetic temperature records designed to mimic properties of actual temperature records 

where artificial biases have been deliberately added, (e.g., DeGaetano 2006; Domonkos 2011, 

2021; Menne and Williams 2009; Pielke et al. 2007; Reeves et al. 2007; Squintu et al. 2020; 

Venema et al. 2012; Williams et al. 2012). Since both the “true” records and the “biases” are 

known in advance, the successes and failures of the homogenization technique―at correcting 

these synthetic records―can be directly quantified.  

In terms of these synthetic benchmarking tests, most of the homogenization algorithms in 

use today appear to improve the quality of the data, i.e., to remove more biases than they add 

(Domonkos 2011, 2021; Squintu et al. 2020; Venema et al. 2012; Williams et al. 2012). This 

has led to a widespread belief among the homogenization community that homogenized 

thermometer records are automatically more reliable than the original data (Lenssen et al. 

2019; Menne et al. 2018; Osborn et al. 2021; Sun et al. 2022; Vose et al. 2021). However, 

this belief is not necessarily correct. Recently, O’Neill et al. (2022) compared the various 

homogenization adjustments applied to more than 800 European station records in the GHCN 

datasets to the corresponding station history metadata associated with the stations. Only about 

20% of the adjustments applied corresponded to documented non-climatic events.  

Also, the adjustments applied to each station often changed dramatically each time the 

GHCN dataset was updated and re-homogenized, i.e., roughly once per day (O’Neill et al. 

2022). About 80% of the breakpoint adjustments were inconsistently applied. Since the 

gridded averages for regional areas are typically based on multiple station records, these 

inconsistencies for most station records did not necessarily alter the estimated regional 

temperature trends. However, the inconsistencies suggested that many of the adjustments 

were effectively arbitrary in nature. Such serious flaws occurred despite the fact that the 

GHCN homogenization techniques performed relatively well in synthetic benchmarking tests 

(Menne and Williams 2009; Venema et al. 2012; Williams et al. 2012). This suggests 

synthetic benchmarking assessments might be insufficient for evaluating their real-world 

performance.  
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An obvious limitation of synthetic benchmarking is that the evaluation depends on how 

representative the synthetic time series and biases are compared to real thermometer records. 

Indeed, DeGaetano (2006) cautioned that while many techniques were very effective at 

identifying non-climatic step change breakpoints when the underlying reference time series 

were trendless, problems due to statistical aliasing arose when some of the stations had long-

term trend biases. In most of these cases, when the homogenization algorithm identified a 

breakpoint, about half of the trend bias was falsely included as part of the homogenization 

adjustment. Pielke et al. (2007) emphasized that this aliasing problem could potentially be 

adding artificial trends to the homogenized temperature records that were non-climatic in 

nature.  

Menne and Williams (2009) conceded that aliasing was also an artefact of the PHA 

method, but seem to have concluded it was only a minor issue, and not necessarily a problem 

since it “would bring the adjusted target more in agreement with the background trend 

captured by the neighbors” (Menne and Williams 2009). Hausfather et al. (2013) 

acknowledged aliasing could potentially cause problems if urbanization biases were 

substantial, and their analysis of the United States Historical Climatology Network (USHCN; 

a subset of version 3 of the GHCN dataset) revealed some aliasing was occurring when urban 

neighbors were used. However, they suggested this dataset was sufficiently rural for the 

problem to be minor. 

Connolly and Connolly also considered aliasing in a series of working papers in 2014 

(Connolly and Connolly 2014a-d). In those papers, it was noted that the aliasing effect 

appeared to be leading to substantial “urban blending” in the homogenized records, whereby 

some of the urbanization bias of reference stations was aliased to the most rural records 

during the homogenization process (Connolly and Connolly 2014d). The flipside of this is 

that some of the urbanization biases of the most urban stations are also reduced via aliasing. 

However, the net effect was that the trends of all records converge to the average of all 

stations (rural and urban). These working papers noted that many attempts to accurately 

quantify the extent of urbanization bias in homogenized datasets by comparing rural and 

urban trends (Li et al. 2004; Peterson et al. 1999) appeared to have overlooked this possibility 

(Connolly and Connolly 2014b-d). They noted that the aliasing problem is also a concern for 

other non-climatic biases that introduce long-term biases into a large fraction of a reference 

network, e.g., siting biases (Connolly and Connolly 2014a), and furthermore, that 
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assessments of the extent of siting biases in homogenized datasets that compared the trends of 

well-sited and poorly-sited stations (Fall et al. 2011; Menne et al. 2010) similarly appeared to 

have overlooked this problem. At any rate, Connolly and Connolly warned that the 

unfortunate combination of the urban blending problem coupled with the widespread nature 

of the urbanization bias problem had misled the climate community into a false confidence 

that homogenization had largely eradicated the urbanization bias problem (Connolly and 

Connolly 2014a-d). 

Indeed, by using manual empirical homogenizations based on known station metadata 

rather than statistical homogenization and by identifying four regions that collectively 

comprised most of the rural stations with relatively long and complete records, Soon et al. 

(2015), and more recently Connolly et al. (2021), generated rural northern hemisphere LSAT 

estimates that were markedly different from the standard estimates based on both urban and 

rural homogenized records. 

As part of their analysis of Chinese temperature trends, Soon et al. (2018) described 

theoretically the statistical reasons for the urban blending problem. They also demonstrated 

the problem empirically using the results from an analysis of 9 stations in the Beijing, China 

area (He and Jia 2012). He and Jia (2012)’s results showed a strong correlation between the 

rate of urbanization around a station and the magnitude of the 1978-2008 linear warming 

trend in the unhomogenized data. After homogenization, the correlation was substantially 

reduced because the trends of the most rural stations were increased while those of the most 

urban stations were reduced. That is, all trends converged towards the average of the station 

network. 

Soon et al. (2018)’s conclusions on the significance of the urban blending problem led to 

some debate. Li and Yang (2019) suggested that developers of these statistical 

homogenization techniques might have already considered this problem and overcome it 

somehow. In their reply, Soon et al. (2019) stressed that it is important to distinguish between 

two separate stages of the homogenization process: 

1) Identifying when a non-climatic step change bias occurred;

2) Establishing (and adjusting for) the sign and magnitude of the bias.

In the first stage, many of the current homogenization procedures perform quite well 

when tested with simulated and/or synthetic biases as described above. These evaluations of 
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the first stage appear to have been what convinced Li and Yang (2019) that the 

homogenization process was “correct and reasonable”. However, the urban blending problem 

arises during the second stage of the process (Soon et al. 2019). 

Although Soon et al. (2018) had demonstrated the urban blending effect both theoretically 

and using a sample of nine stations in the Beijing, China area, this was a very small sample 

size that only covered a relatively small geographical area. Hence, Soon et al. (2019) 

explicitly called on “further research to investigate its extent”.  

We have attempted here to evaluate the extent of urban blending for two different 

countries―Japan (a heavily urbanized country) and United States (a country with a mixture 

of urban and rural stations).  

For Japan, we base our analysis on the Japanese component of the GHCN datasets 

version 3 (Lawrimore et al. 2011) and version 4 (Menne et al. 2018). Japan is a highly 

urbanized country with a high density of weather stations. Many of the Japanese stations are 

affected by urbanization bias, particularly the longest and most complete records (Fujibe 

2009; Fujibe and Ishihara 2010; Fujibe 2011, 2012; Fukui 1957; Matsumoto et al. 2017; 

Stewart 2019). In particular, the Tokyo metropolitan area has such a geographically large 

urban heat island that it spans multiple cities (Matsumoto et al. 2017; Yamashita 1996). 

For the United States, we base our analysis on the USHCN dataset (Menne et al. 2009). 

The USHCN was a very high quality subset of the GHCN dataset up until version 4 that was 

also homogenized using PHA by NOAA, but independently from the rest of the GHCN 

(Lawrimore et al. 2011) and is still updated and maintained by NOAA. As mentioned above, 

a previous study (Hausfather et al. 2013) also looked at the aliasing problem for this dataset 

but reached different conclusions from us. Therefore, we will also reanalyze the Hausfather et 

al. (2013) data to investigate possible reasons for the apparently different conclusions. 

2. Illustration of the mechanics of the blending problem

In order to understand how blending/aliasing occurs through current temperature

statistical homogenization techniques (including PHA), let us consider a highly idealized 

thought experiment as illustrated in Fig. 1. Let us imagine a world in which no global 

warming or cooling was occurring. Instead, annual temperatures vary randomly from the 

local temperature within the range ±0.1°C. In Fig. 1, we consider six stations located in a 

similar part of this hypothetical world where the average regional temperature is 8.0°C. 
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Station 1 remains rural. Therefore, the temperature variability shown in Fig. 1b over the 

arbitrarily chosen period of 1970-2000 for this station oscillates between 8.0±0.1°C for each 

year. In our case, the random time series we generated nominally has a linear trend of –

0.01°C/century over this period, but by design this is a purely random time series.  

Figure 1 Synthetic temperature records (1970-2000) for six hypothetical temperature 

records use in our thought experiment to consider how the urban blending problem arises 

from current temperature homogenization techniques such as Menne and Williams (2009). 

Panel (a) envisages a hypothetical world where there has been no long-term global 

temperature trend and annual temperatures at a rural location (Station 1) have varied 

randomly between 8.0±0.1°C over the 1970-2000 period. However, two neighboring 

locations have become steadily more urbanized over this period and thereby each have 

experienced a different urban warming trend superimposed on the rural temperature 

variability. One location (Station 2) has become moderately urbanized with a linear urban 

warming trend of +1.5°C per century over the 1970-2000 period. The other location (Station 

3) has become heavily urbanized with double the urban warming trend at +3.0°C per century

over the period. Panel (b) plots the temperature records that would have been recorded for

each station assuming that no other non-climatic biases occurred and a continuous record was

kept for the entire period. Finally, Panel (c) hypotheses three equivalent stations (Stations 4-

6) that experienced the exact same temperature variability as Stations 1-3, but each also
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experienced a station move to a cooler location (e.g., a higher elevation) in 1985 that 

introduced a one-off step-change cooling bias of −0.6°C. 

For Stations 2 and 3, the underlying temperature variability is exactly the same. However, 

each station also experienced a continual “urban warming” over the 1970-2000 period that 

we have approximated as a linear ramp of +1.5°C per century and +3.0°C per century 

respectively. In our hypothetical world, all three thermometer stations were unaffected by any 

other non-climatic biases (unlikely in the real world) and their annual temperature records are 

plotted in Fig. 1b.  

Meanwhile, let us suppose that each station also had an equivalent neighboring station 

(Stations 4-6) that was identical except also experiencing a station move in 1985 that 

introduced a one-off cooling bias of exactly –0.6°C. No other non-climatic biases occurred 

(unlikely in the real world) over this period. Their annual temperature records are plotted in 

Fig. 1c. 

Now let us consider in turn what would happen if we used either Station 1, 2 or 3 to 

homogenize the temperature records of the other three stations. For simplicity, let us suppose 

that the homogenization process only uses one neighboring station. In reality, current 

homogenization approaches either use the average of multiple neighbors as a “reference 

series” (Easterling and Peterson 1995) or apply an iterative process whereby each station is 

compared to multiple neighbors one-at-a-time and then the values from all of these pairwise 

comparisons are averaged together, e.g., PHA (Menne and Williams 2009). 

Let us suppose that the homogenization technique identifies the presence and timing of 

any step-change biases with 100% accuracy. It therefore accurately identifies that Stations 4-

6 each experienced a non-climatic bias in 1985. How would the technique calculate the sign 

and magnitude of this bias? Current homogenization techniques typically do this through a 

statistical evaluation of the temperature difference series. Typically, the magnitude of the bias 

is estimated as being the average of the difference series for a period after the breakpoint 

minus the average of the difference series for a period before the breakpoint. In the case of 

the PHA, the length of these periods corresponds to the “homogeneous” series between the 

breakpoint and the next breakpoint in the difference series, but it must be a minimum of 24 

months (2 years) (Menne & Williams, 2009). In cases where the incidence of breakpoints is 
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low, this may be 10−20 years or longer. For simplicity, let us suppose that it is exactly 10 

years every time.  

Figure 2 plots the resulting difference series using each of Stations 1-3 as the neighbor. 

Fig. 3 plots the results of the homogenized Station 4-6 records, depending on whether Station 

1, 2 or 3 was used as the neighbor, i.e., Fig. 3a, b or c, respectively. 

Figure 2 Difference series that would be used for estimating the timing and magnitude of 

any breakpoints in the temperature records for our hypothetical Stations 4-6 from Fig. 1 when 

the neighbor records used are (a) Station 1, i.e., rural, (b) Station 2, i.e., moderately 

urbanized, and (c) Station 3, i.e., heavily urbanized. As explained in Fig. 1, each of Stations 

4-6 experienced a station move in 1985 that introduced a one-off step-change cooling bias of

−0.6°C. However, even if the homogenization algorithm correctly identifies that a bias

occurred in 1985, the calculated magnitude of the bias depends on whether the neighbor has

experienced more or less urban warming than the target station. That is, the magnitude of

cooling step change biases (as in this case) will be overestimated by more urbanized

neighbors and underestimated by less urbanized neighbors. For warming step change biases,

the opposite would occur.
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Figure 3 Illustration of how the three homogenized temperature records for the 

hypothetical Stations 4-6 of Fig. 1 would vary substantially depending on how much urban 

warming the neighbors used for estimating the magnitude of the identified biases 

experienced. That is, the homogenization adjustment applied to each breakpoint varies 

depending on whether the target and neighbor stations have experienced different degrees of 

urban warming. (a)-(c) represent the different homogenized Stations 4-6 records that would 

result if the neighbor records used are (a) Station 1, i.e., rural, (b) Station 2, i.e., moderately 

urbanized, and (c) Station 3, i.e., heavily urbanized. Note that if the target and neighbor 

records have experienced a similar urban warming over the period (e.g., Stations 1 and 3; 

Stations 2 and 5; or Stations 3 and 6), then the bias from the station move is correctly 

removed and the underlying urban warming remains. However, if they experienced different 

degrees of urban warming, then some of this difference in urban warming becomes “aliased” 

into the homogenized record. 

Although the above thought experiment is obviously highly idealized, it allows us to see 

in an idealized manner how and why aliasing/blending occurs. As can be seen by comparing 

the results of Fig. 3 to the corresponding unhomogenized temperature records of Fig. 1c, in 

all cases, the homogenization process has succeeded in making the temperature record look 
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much “smoother” and more “continuous” than the unhomogenized record. However, if the 

neighbor experienced more or less urban warming than the target station, the process also 

involved blending. The estimated magnitude of the bias was either underestimated or 

overestimated depending on whether the neighbor was less or more affected by urban 

warming. 

Specifically, in our cases, if the neighbor was more urbanized than the target station, then 

the process overestimated the magnitude of the cooling bias in 1985 (Fig. 2). Hence, the 

homogenization process added some of the extra urban warming of the neighbor into the 

homogenization adjustment (Fig. 3). Contrariwise, if the neighbor was more rural than the 

target station, the magnitude of the cooling bias was underestimated. Hence, the 

homogenization process failed to remove all of the actual cooling bias.  

If our hypothetical station move had instead led to a warming bias, the phenomenon 

would be the other way around. Then, more urbanized neighbors would underestimate the 

magnitude of the warming bias, whereas more rural neighbors would overestimate its 

magnitude. This is the problem that was identified by some as “aliasing” (deGaetano 2006; 

Pielke et al. 2007) and others as “urban blending” (Connolly and Connolly 2014c; Soon et al. 

2015, 2018, 2019; Connolly et al. 2021).  

The net effect is a tendency for the temperature trends of homogenized stations to 

converge towards those of the neighbors. Generally, this tendency will increase the more 

breakpoints are identified by the homogenization process. If the neighbor network comprises 

a mixture of stations with varying degrees of urbanization bias, the homogenized stations will 

converge towards the average degree of urbanization bias of the network. The most rural 

stations will tend to have “urban warming” added by homogenization while the most urban 

stations will tend to have some (but not all) of their “urban warming” removed (Soon et al. 

2018). 

Counterintuitively, when homogenization “successfully” removes any non-climatic step 

changes without aliasing, the homogenized records should ideally retain their trend biases 

(including urban warming). This is because the goal of the current homogenization 

techniques is to remove non-climatic step biases, rather than trend biases. Therefore, if the 

step biases are all accurately removed by a homogenization, then the homogenization process 

should ideally leave the trend biases unaffected. Trend biases can (and should) then be 

accounted for in a later, separate step, as suggested by Soon et al. (2018).  
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That said, we caution that, if multiple consecutive step biases of the same sign occurred 

over a period of time, these might initially be mistaken for a “trend bias”. For instance, 

Menne et al. (2009) consider an example (Reno, Nevada, USA) where the unhomogenized 

record suggests an apparent urban warming “trend bias” beginning in the 1970s. However, 

they argued that in that particular case, this apparent “trend bias” was a result of “major step 

changes during the […] 1990s caused by station relocations” (Menne et al. 2009). 

Apparently, in this case, the multiple station relocations coincidentally introduced biases of 

the same sign. 

How then can we minimize the aliasing/blending problem? We propose here two 

potential workarounds and consider their pros and cons:  

(1) Arguably the simplest way to avoid the blending problem is to bypass the use of

reference records for this second stage of the homogenization process and evaluate the

value of the bias internally using statistical properties of the target record. For

example, by comparing the mean temperature for a given period (perhaps 1-2 years)

before and after the identified breakpoint.

(2) Another approach is to ensure only neighbors that experienced a similar degree of

trend biases are used for estimating the value of the non-climatic bias. For example, if

the target station is rural, then the reference neighbors should also be similarly rural,

while if the target station experienced urban warming, then similarly urbanized

neighbors should be used. This is shown as Station 4 of Fig. 3a, Station 5 of Fig. 3b,

and Station 6 of Fig. 3c in our thought experiment.

A major advantage of the first approach is that it completely avoids the blending problem 

since no neighbors are used in the second stage (although they could have been used in the 

first stage, i.e., identification of breakpoints). However, a potential disadvantage is that if the 

station experienced any genuine warming or cooling over the comparison period this would 

be lost in the process. This could be particularly problematic for station records that have 

many step biases. 

A disadvantage of the second approach is that suitable neighbors with similar trend biases 

need to be identified for each target station before homogenization. This could significantly 

reduce the pool of potential reference series for some stations, e.g., rural stations surrounded 

by urban stations or vice versa―although the larger pool might be used for the first stage of 

identifying the breakpoints. However, it offers the advantage that the homogenization should 
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retain any regional warming or cooling that coincided with the timing of the various 

breakpoints. 

3. Data sources and methodology

a. Analysis of Japanese temperature records

For our analysis of the Japanese temperature records, we downloaded the widely used

GHCN monthly datasets from https://www.ncei.noaa.gov/products/land-based-station/global-

historical-climatology-network-monthly [last accessed on May, 2022]. In 2018, the dataset 

was updated from version 3 (Lawrimore et al. 2011) to version 4 (Menne et al. 2018) 

involving a major overhauling of the datasets, but version 3 was kept updated until late-2019. 

Therefore, we analyze both versions 3 and 4. Both versions have unhomogenized 

(henceforth, “raw”) and homogenized (henceforth, “adjusted”) datasets―the former has only 

quality control corrections applied, and the latter has been homogenized using Menne & 

Williams (2009)’s automated PHA techniques. For simplicity, we only study annual trends 

here. Therefore, we used the annual mean temperature available for 12 complete months for a 

given year. To analyze the temperature variations for given stations, we adopt the popular 

approach of converting each temperature record into an “anomaly time series” relative to a 

constant baseline period of 1961–1990. Following Connolly et al. (2021), we require a station 

to have a minimum of at least 15 complete years of data during this baseline period to be 

incorporated into our analysis. Statistical calculations (linear regression, correlation, and the 

student t-test) were performed using MS-Excel. 

Figure 4a and b shows the location of Japanese stations extracted from the GHCN 

datasets. This comprises 167 stations for version 3 and 191 for version 4. Figure 4c and d 

compare the gridded mean LSAT time series for Japan using all available stations (regardless 

of urbanization) with either the raw or adjusted datasets. We note that the homogenization 

process has slightly increased the linear temperature trends for both GHCN versions. Also 

plotted are the total station numbers over time in Fig. 4e and f.  
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Figure 4 (a, b) The location maps of all Japanese stations regardless of record length, (c, 

d) annual mean temperature anomaly and (e, f) number of stations from 1900–2020 of using

(a, c, e) GHCN version 3 and (b, d, f) version 4 datasets. Temperature anomalies in (c, d) are

relative to a constant baseline period of 1961–1990.

Probably, the most straightforward metric for studying the urban blending phenomenon 

using large numbers of stations is to compare the linear temperature trends of stations before 

and after homogenization (He and Jia 2012; Soon et al. 2018). However, as can be seen from 

Fig. 4c and d, the temperature variability over the entire record is not strictly linear. Also, the 

timespan of each station is different. Hence, it is important to establish a suitable time period 

over which to calculate the linear trends. 

The available station numbers in version 4 gradually increased from 1936 until the late 

1950s (Fig. 4e and f). However, in version 3 there was a sharp fall in station numbers after 
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1990  (Fig. 4e)―a phenomenon that has been discussed elsewhere in detail (Connolly et al. 

2021; Connolly and Connolly 2014d; Lawrimore et al. 2011; Soon et al. 2015, 2018). 

Therefore, for our version 3 analysis, we consider the linear trends over 1955–1990, i.e., the 

period with maximum station coverage (Time range 1, as introduced below). For version 4, 

much of this 1990 drop-off problem appears to have been reduced, although there is a 

substantial drop-off in station counts in 2019. With that in mind, for version 4, we analyze 

three different time periods, summarized as follows: 

 Time range 1: “maximum overlap period between versions 3 and 4 (1955–1990)”;

 Time range 2: “maximum period for stations that are still active for version 4

(1955–2021)”;

 Time range 3: “the longest period with a reasonable overlap for version 4 (1936–

2019)”.

b. Analysis of United States temperature records

The USHCN dataset was a very high quality subset of the GHCN dataset up until version

4 that was also homogenized using PHA by NOAA, but independently from the rest of the 

GHCN since the U.S.-based NOAA had access to additional station history information 

including changes in observation times (Karl et al. 1986) and other station changes (Karl and 

Williams 1987; Quayle et al. 1991). It was originally compiled by Karl et al. (1988) with the 

goal of selecting the most rural, relatively complete and climatically representative stations 

(or composite stations) from a much larger dataset known as the Cooperative Observer 

Program (COOP). 

Figure 5 shows the location of the United States stations. We downloaded the datasets for 

minimum temperature (Tmin), maximum temperature (Tmax), and the average mean 

temperature (Tavg), where Tavg is the mean of Tmin and Tmax, from the link of 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2.5 [Last accessed in April 2023]. As can be seen 

from this figure, the USHCN dataset provides a very high density of stations for a country 

(~1200 stations) and the COOP dataset provides an even higher density (~6000 stations). 

When Menne et al. (2009) upgraded the USHCN to version 2.0, they switched from using 

Karl and Williams (1987) for their statistical homogenization to PHA (Menne and Williams 

2009). They dropped the explicit empirical adjustments for changes in instrumentation 

(Quayle et al. 1991) and urbanization bias corrections (Karl et al. 1988) of version 1.0. They 
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also decided to use the COOP dataset as the reference network for homogenization purposes 

(Menne et al. 2009).  

Figure 5 (a) Location of the United States stations for the USHCN dataset (red circles) as 

a subset of stations compiled from the larger COOP (grey circles). Our main analysis is based 

on the USHCN stations, although since 2009, the homogenization of the USHCN stations is 

carried out using the COOP stations for the reference neighbor network. This is relevant for 

our reanalysis of the Hausfather et al. (2013) study. Panel (b)-(d) show gridded mean annual 

Tavg, Tmax, and Tmin anomaly for all USHCN stations from 1895-2022, respectively. 

Temperature anomalies are relative to a constant baseline period of 1901–2000. Panels (e)-(g) 

represent the number of stations available for each year for (b)-(d), respectively.  

As well as the GHCN, there is an unhomogenized (“raw”) version as well as a PHA-

adjusted version of the USHCN. However, before NOAA applies the PHA homogenization 

algorithm to the USHCN, they apply an independent set of time-of-observation bias (TOB) 

adjustments to each station to account for documented changes in observation time (Karl et 
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al. 1986; Vose et al. 2003). Therefore, to study just the effects of the PHA homogenization, 

for our USHCN analysis we compare this partially adjusted dataset “raw (TOB-adjusted)” to 

the fully adjusted “adjusted (PHA+TOB-adjusted)” dataset instead of the completely 

unadjusted “raw” dataset.  

As for Japan, we used the annual temperatures available for 12 complete months for a 

given year, and all temperature records (whether Tmin, Tmax, or Tavg) were first converted into 

an “anomaly time series”. However, because the USHCN stations tend to have relatively long 

and complete records typically beginning in 1895 or earlier, we used a longer baseline period 

of 1901-2000 and required a station to have a minimum of at least 50 complete years of data 

during this baseline period to be incorporated into our analysis. This incorporated most of the 

available USHCN stations. 

To calculate the gridded temperatures for each version of the USHCN, all stations were 

assigned into 5°× 5° horizontal grid boxes spanning the contiguous United States. For each 

grid box, the mean of all station anomalies available was calculated for each year (separately 

for Tmin, Tmax, and Tavg). The anomaly for the contiguous United States was then the area-

weighted average of all grid-boxes with data for that year, where the area weighting was the 

cosine of the latitude of the middle of the grid-box. 

In terms of time periods, as mentioned above, a large number of USHCN stations (mostly 

the more urbanized stations, but with many rural stations) have fairly complete records from 

at least 1895. Therefore, we used the 1895-2022 period for our main analysis, while we also 

present the results for the longest period with most stations (1917-2005) and the last century 

(1923-2022) in Figs. S3 and S4, respectively. 

c. Estimating the degree of urbanization of the stations for both countries

Version 3 included two estimates of the degree of urbanization of each station as part of

the accompanying metadata based on Peterson et al. (1999)’s ratings. These were the 

urbanization metrics used by (e.g., Connolly et al. 2021; Soon et al. 2015). However, no 

urbanization estimates were provided for version 4. Therefore, to estimate the degree of 

urbanization of each station, we use two metrics equivalent to those used by Soon et al. 

(2018), that is, 1) the average population density and 2) the average night brightness 

associated with the station location. The former was obtained by the Gridded Population of 

the World (GPW) version 4 dataset (CIESIN 2018), while the latter was derived from the 
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Global Radiance Calibrated Nighttime Lights dataset (NOAA 2015). The average values for 

each station location were determined from the mean of the nine pixel values centered at the 

station location, of the appropriate datasets for both metrics.  

All stations were then ranked from most urban to most rural according to each metric. 

Hence, each station was initially assigned two urban rankings―one based on its local 

population density and the other based on its local night brightness. We then derived the 

degree of urbanization (DU) at each station, as 𝐷𝑈𝑖 = 1 − 𝑅𝑖 𝑛⁄ , where n is the maximum

station number. For Japan, n=167 and 191 for version 3 and version 4 of the GHCN, 

respectively. For the United States, n=1218.  Scatter plots of both metrics are shown in Fig. 6. 

As Soon et al. (2018) described for the Chinese stations in GHCN, both metrics provide 

very similar urban rankings. That is, stations with higher night brightness strongly coincide 

with those with higher population densities. Still, given that both metrics describe a slightly 

different aspect of urbanization, the exact rankings varied slightly for each metric. Therefore, 

for our main analysis, the overall ranking (Ri) for each station (i), was calculated as the 

average of the two ranks. However, we have also repeated our main analysis for Japan in 

Figs. S1 and S2 using each of the metrics individually, demonstrating that the results were 

similar to the equivalent results of Fig. 6. 

Accepted for publication in Journal of Applied Meteorology and Climatology. DOI 10.1175/JAMC-D-22-0122.1.Brought to you by University of Delaware Library | Unauthenticated | Downloaded 07/14/23 08:46 PM UTC



21 

File generated with AMS Word template 2.0 

Figure 6 The population density and night brightness against the degree of urbanization 

(DU) for (a) all Japanese stations in GHCN version 3;  (b) version 4 and (c) United States 

stations in USHCN. The left y-axis is shown using log-scale.  

d. Reanalysis of Hausfather et al. (2013)’s results for the USHCN dataset

For our reanalysis of the Hausfather et al. (2013) study, we downloaded their

supplementary information from NOAA’s ftp website at:  

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/papers/hausfather-etal2013-suppinfo/ [Last accessed 

in December 2022]. This dataset comprises different iterations of the USHCN 

homogenization process that were carried out using one of eight subsets of the COOP stations 

as reference neighbors (either “rural” or “urban” according to the thresholds identified by 

Hausfather et al. (2013) for one of their four urbanization metrics: ISA, population growth, 

night brightness or GRUMP). These iterations were carried out using an early release of the 

current version 2.5 PHA called “52g”.  
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Although NOAA’s archive for Hausfather et al. (2013) also provided the results for the 

main part of their analysis that used all COOP stations, those results were based on the older 

version 2.0 PHA called “52d”. Therefore, to more directly compare the Hausfather et al. 

(2013) rural/urban neighbor subsetting experiments to the standard approach, we need a 

version of USHCN that has been homogenized using version 2.5 PHA. Unfortunately, 

NOAA do not house a public archive of the previous daily updates of the USHCN dataset, 

but just the latest iteration. However, fortunately, the version we use for our main analysis in 

this paper is also version 2.5 PHA (“52j”) and hence suitable for our reanalysis of Hausfather 

et al. (2013).  

Hausfather et al. (2013) only discussed and provided the Tmin and Tmax results and their 

discussion of aliasing focused on Tmin. Therefore, our reanalysis is based on Tmin and Tmax., 

with a particular focus on Tmin. For our reanalysis, for direct comparison with Hausfather et 

al. (2013), we calculated the linear trends (using linear least squares fitting) over the 1895-

2010 period in units of °C/century.

4. Results

a. Urbanization bias and urban blending in the Japanese temperature data

Figure 7 shows the relationship between the degree of urbanization and linear warming

trends of GHCN versions 3 and 4 for each Time range. In all panels, there is an 

approximately linear relationship between the linear temperature trend and degree of 

urbanization for the raw data. The slopes and intercepts of these linear relationships are 

provided in each panel along with the R2 values. Table 1a summarizes the statistics of linear 

temperature trend equations against the degree of urbanization (DU). This table provides the 

p values associated with these relationships and in all cases, p is much lower than 0.05 for 

raw data. In other words, the more urbanized the station the greater the warming trend. 

Therefore, the Japanese unhomogenized (raw) temperature records are strongly influenced by 

urbanization bias.  
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Figure 7 (a-b) Linear warming trends for the Japanese stations of raw and adjusted GHCN 

data against the degree of urbanization (DU) for Time range 1 (versions 3 and 4), (c) Time 

range 2, and (d) Time range 3 in Table 1a. 

a. Statistics of linear temperature trend equations of against DU

Time 

range 

number 

GHCN 

version 

Station 

number 

Period 

analyzed 

Trend 

(ºC/century) 

Coefficient of 

determination, R2 

p-value for trend

Raw Adjusted Raw Adjusted Raw Adjusted 

1 v3 124 1955–1990 1.995 0.545 0.290 0.042 <0.001 0.022 

1 v4 121 1955–1990 1.658 –0.064 0.216 0.001 <0.001 0.756 

2 v4 47 1955–2021 1.211 0.432 0.239 0.065 0.0011 0.124 

3 v4 76 1936–2019 1.576 0.415 0.385 0.097 <0.001 0.006 

b. Temperature trends estimated at fixed DU using the equations based on a

Time 

range 

number 

GHCN 

version 

Most rural, DU=0 

(ºC/century) 

Average urban, DU=0.5 

(ºC/century) 

Most urban, DU=1 

(ºC/century) 

Raw Adjusted Raw Adjusted Raw Adjusted 

1 v3 –1.107 –0.288 –0.109 –0.015 0.889 0.257 

1 v4 –0.890 –0.068 –0.061 –0.100 0.768 –0.132

2 v4 1.355 1.642 1.961 (+31%) 1.858 (+12%) 2.566 (+47%) 2.074 (+21%) 

3 v4 0.655 1.420 1.443 (+55%) 1.627 (+13%) 2.231 (+71%) 1.835 (+23%) 

Table 1 (a) Statistics of linear temperature trend equations against the degree of 

urbanization (DU), and (b) trends estimated at fixed DU values of 0, 0.5, and 1 for the 

Japanese GHCN version 3 and 4 networks for time ranges 1–3. In (a), bold numbers represent 

statistically significant (p < 0.05). In (b), the values enclosed in parentheses for time ranges 2 

and 3 indicate the relative increase in the warming trend from the most rural situation 

(DU=0). For the other two periods, the most rural situation yielded cooling trends. 

The linear regression equations are of the form, y=mx+c, where y is the linear warming 

trend in °C/century and x is DU. Therefore, they allow us to estimate the average linear 

warming trend we would expect for a given DU. Table 1b shows the temperature trends 

estimated at fixed DU values for Time range 1–3 using linear regression equations obtained 

from Table 1a. For all periods analyzed, increasing the DU value adds warming as expected 

from the urban heat island effect. Indeed, in the case of the 1955–1990 periods, the “most 

rural” trends are cooling trends, i.e., –1.107°C/century for version 3 and –0.89 °C/century for 

version 4, but the “most urban” trends are always positive.  

After homogenization, the apparent linear relationships between temperature trend and 

degree of urbanization are substantially reduced, as indicated by the very small R2 values and 

higher p values (Table 1a). The linear fits for version 4 for 1955–1990 and 1955–2021 are not 

statistically significant (p>>0.05). Initially, one might (mistakenly) interpret this reduction as 
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meaning the homogenization process had somehow removed most of the urbanization biases 

from the data. However, a visual inspection of Fig. 7 shows that it is mostly due to urban 

blending―that is, homogenization has consistently added extra warming to the least 

urbanized stations and reduced the warming of the most urbanized stations until the trends of 

all stations have converged towards those of the network averages. This can be seen 

graphically by the fact that, for each panel of Fig. 7, the raw and adjusted linear fits intersect 

near the middle of the x-axis, i.e., around DU=0.5. If the homogenization process were 

reducing the urbanization bias relationship by truly removing urbanization bias, then the 

adjustments should instead act to converge all trends towards those of the most rural stations 

(DU=0). Yet, instead, the adjustments act to converge all trends towards the average of the 

network (DU=0.5). For example, let us consider the temperature trends for GHCN version 4 

for Time range 3 (1936–2019). The mean temperature trend for the entire network over this 

period was 1.68°C/century (not shown in figure) for the adjusted data. This is quite similar to 

that for the raw data as 1.63°C/century (not shown in figure). However, it is approximately 

2.5 times higher than the “most rural” trend of 0.655°C/century (Table 1b). Very similar 

values between raw and adjusted mean temperature trends for all GHCN stations (Fig. 4c and 

d) can be also explained as the above average of the network (DU=0.5), i.e., urban blending

due to homogenization. 

Another way to evaluate the extent of urban blending in the Japanese data is to consider 

the trends of the 20% most urban stations (DU>0.8) and the 20% most rural stations 

(DU<0.2). In Fig. 8, we plot these trends for Time range 3 as an example. While the 

temperature trends for the urban stations decreased from 2.14 to 1.80 ºC/century after 

homogenization was made, the trends for the rural stations increased from 0.97 to 1.56 

ºC/century (Fig. 8a and b). 

It might be tempting to treat the unhomogenized trends of the most rural stations as 

representative of “rural Japan”, i.e., 0.97 ºC/century over the period 1936-2019. However, we 

caution that the station numbers for both of these subsets are very low (Fig. 8c and d) and 

especially so for the rural subset that only comprises 5 stations. Moreover, for this subset, no 

attempt has been made to correct for non-urban related non-climatic biases. That said, since 

the homogenized series is affected by urban blending, the raw series is probably more 

representative of “rural Japan” than the PHA-adjusted version.  
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For version 4 of the GHCN, all PHA-adjustments are determined statistically without 

reference to any station history metadata (O’Neill et al. 2022). However, apparently some 

station history metadata for Japanese stations is available online at 

https://www.data.jma.go.jp/obd/stats/data/mdrr/chiten/meta/discnt_sfc.csv [last accessed May 

2023]. Therefore, we suggest that future research into evaluating rural Japanese trends could 

use such information to account for other non-climatic biases in the data.  

Figure 8 (a, b) Annual mean temperature anomaly and (c, d) number of urban (DU>0.8) 

and rural stations (DU<0.2) from 1900–2020 of using GHCN version 4 dataset for Time 

range 3 in Table 1a. Temperature anomalies in (c, d) are relative to a constant baseline period 

of 1961–1990. 

There are also challenges associated with the use of other types of data to estimate long-

term rural Japanese temperature trends. Satellite-based tropospheric temperature estimates 

should be unaffected by urbanization, and interestingly, they suggest less warming than 

thermometer-based records (McKitrick and Christy 2020; Zou et al. 2023). However, they are 

confined to the satellite era (1978-present) and focus on atmospheric temperature trends 

rather than near-ground temperatures. Sea surface temperatures and marine air temperatures 

should be unaffected by urbanization biases, but debate is ongoing over how to best resolve 

the non-climatic biases associated with those datasets – especially for the earlier, data-sparse 

periods before the mid-20th century (Kent et al. 2017; Kent and Kennedy 2021). Japan also 

offers intriguing long-term records that are potentially useful for studying changes in spring-

time temperatures, i.e., the flowering dates of cherry trees which have been recorded in some 

locations for over 1200 years (Aono and Kazui 2008; Aono and Saito 2010; Christidis et al. 
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2022). However, these records are mostly associated with urbanized areas and hence 

significantly affected by urban warming (Aono and Kazui 2008; Christidis et al. 2022). 

b. Urbanization bias and urban blending in the United States temperature data

Version 3 of the GHCN incorporated the homogenized USHCN dataset as part of the full

dataset (Lawrimore et al. 2011). Although version 4 of the GHCN no longer explicitly carries 

out this step of separately homogenizing the USHCN and the rest of the GHCN, the USHCN 

dataset is still being updated and maintained by NOAA and many of the USHCN stations and 

COOP stations are included in the GHCN (Menne et al. 2018). Indeed, stations from the 

contiguous U.S. represent ~40% of the GHCN dataset (Menne et al. 2018). Moreover, as can 

be seen from Fig. S5, the USHCN is much less urbanized than the Japanese data. Therefore, 

let us now assess how prevalent urban blending is in the USHCN. 
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Figure 9 Linear warming trends of (a) Tavg, (b) Tmax, and (c) Tmin for the United States 

(USHCN) stations for the raw (TOB-adjusted) and adjusted data against the degree of 

urbanization (DU) for 1895-2022. Only stations that had at least 98% coverage for the full 

1895-2022 period are plotted. 

Figure 9a shows the equivalent Tavg results to Fig. 7 for the United States, except that the 

period is longer (1895-2022), while the trends for Tmax and Tmin are illustrated in Fig. 9b and 
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c. It has already been noted for the USHCN (Hausfather et al. 2013) that the urban warming 

effect is mostly a phenomenon for Tmin.  

Indeed, as can be seen from Fig. 9b, there is not much difference in trends for Tmax with 

increasing DU (either before or after PHA homogenization). In contrast, we can see from Fig. 

9c, for the raw (TOB-adjusted) Tmin data, the 1895-2022 linear trend increases with increasing 

DU, i.e., there is a noticeable urban warming effect. The equation of the line implies a 

warming trend for the most urban stations (DU=1) of +1.25°C/century, while there is a 

cooling trend for the most rural stations (DU=0) as −0.33°C/century over 1895-2022. 

However, most of this urban warming effect is apparently reduced after PHA―the difference 

in trends between most and least urban stations is reduced from +1.57°C/century to 

+0.29°C/century after homogenization. The results for Tavg are intermediate since Tavg is the

average of Tmin and Tmax. 

Figure 10 (a, b) Annual mean temperature anomaly and (c, d) number of urban (DU>0.8) and 

rural stations (DU<0.2) from 1895–2022 of USHCN stations. Temperature anomalies in (c, 

d) are relative to a constant baseline period of 1901–2000.

For the trend periods, we studied for Japan, Tmin (and Tavg) blending occurred towards the 

average DU of the network, i.e., the point of intersection of the two lines was at DU≈0.5. 

However, here, blending appears to be towards the most urbanized stations, i.e., the point of 

intersection is at DU≈0.9. The point of intersection is slightly less urbanized at DU≈0.8 for 

Fig. S3 (1917-2005), but similar for Fig. S4 (1923-2022). This is probably at least partially a 

consequence of the fact that―unlike the GHCN dataset – the reference neighbor network 

used for homogenizing the USHCN dataset is a different dataset, i.e., the larger COOP 
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dataset (Fig. 5a). Hence, for the USHCN, urban blending should converge towards the 

average urbanization of this larger COOP dataset rather than that of the USHCN. When the 

USHCN stations were originally been selected from the COOP dataset, one of the selection 

criteria was to identify relatively rural stations (Karl et al. 1988).  

In Fig. 10, we compare the different Tavg trends for United States estimated using either 

(a) and (c) the 20% most urban stations of the USHCN (DU>0.8) or (b) and (d) the 20% most

rural stations (DU<0.2). At the visual resolution plotted here, the differences might appear 

subtle. However, they are quite substantial, as can be seen from Table 2. Equivalent results 

for different periods (1917-2005 and 1923-2022) and for the “raw” dataset can be found in 

Table S1 and S2, along with the gridded time series.  

raw (TOB-adjusted) adjusted (TOB+PHA-adjusted) 

Subset Trend (°C/century) 

Coefficient of 

determination (R2) 

and p-value for 

trend 

Trend (°C/century) 

Coefficient of 

determination (R2) 

and p-value for 

trend 

a. Tmin for 1895-2022

All stations 1.020 0.43 (p<0.001) 0.973 0.42 (p<0.001) 

Most rural (DU<0.2) 0.765 0.28 (p<0.001) 0.841 0.34 (p<0.001) 

Most urban (DU>0.8) 1.299 0.55 (p<0.001) 0.983 0.43 (p<0.001) 

Urban bias in "all stations" 0.255 (25.0%) 0.132 (13.6%) 

Urban bias in "most urban" subset 0.534 (41.1%) 0.142 (14.4%) 

b. Tmax for 1895-2022

All stations 0.514 0.16 (p<0.001) 0.925 0.35 (p<0.001) 

Most rural (DU<0.2) 0.490 0.13 (p<0.001) 0.845 0.28 (p<0.001) 

Most urban (DU>0.8) 0.590 0.20 (p<0.001) 0.932 0.36 (p<0.001) 

Urban bias in "all stations" 0.024 (4.7%) 0.080 (8.6%) 

Urban bias in "most urban" subset 0.100 (16.9%) 0.087 (9.3%) 

c. Tavg for 1895-2022

All stations 0.766 0.32 (p<0.001) 0.949 0.41 (p<0.001) 

Most rural (DU<0.2) 0.616 0.22 (p<0.001) 0.839 0.33 (p<0.001) 

Most urban (DU>0.8) 0.948 0.43 (p<0.001) 0.955 0.42 (p<0.001) 

Urban bias in "all stations" 0.150 (19.6%) 0.110 (11.6%) 

Urban bias in "most urban" subset 0.332 (35.0%) 0.116 (12.1%) 

Table 2 Statistics of linear temperature trend equations of (a) Tmin, (b) Tmax, and (c) Tavg 

against the degree of urbanization (DU) for 1895-2022 period for all USHCN stations and 

“most rural” (DU<0.2) and “most urban” stations (DU>0.8). The difference in trends (defined 

as “urban bias”) between “most rural” stations and “all stations” or “most urban” stations are 

also shown in the table. Bold numbers represent statistically significant (p < 0.05). 

It might be tempting to treat the raw Tavg trends of the most rural stations (DU<0.2) as 

representative of “rural United States”, i.e., +0.616 ºC/century over the period 1895-2022. 
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Indeed, this data has already been adjusted by NOAA to account for the documented changes 

in TOB that collectively introduce a long-term net cooling bias for both Tmin and Tmax and 

hence Tavg (Karl et al. 1986; Balling and Idso 2002; Vose et al. 2003). However, there are 

also other known non-climatic biases associated with the USHCN data: 

 The network-wide transition from analogue to digital thermometers in the 1980s-

1990s is associated with a cooling bias of ~0.4 ºC for Tmax, a warming bias of ~0.3

ºC for Tmin and a net cooling bias of ~0.1 ºC for Tavg (Quayle et al. 1991; Hubbard

and Lin 2006; Menne et al. 2009).

 There seems to have been a network-wide reduction in the average quality of the

station exposure leading to siting biases that are collectively associated with a

long-term warming bias for Tmin (Fall et al. 2011).

We encourage further research to account for these known biases without introducing 

urban blending. Meanwhile, since the homogenized series is affected by urban blending―and 

possibly blending of siting biases (Connolly and Connolly 2014a; Soon et al. 2018)―the raw 

(TOB-adjusted) series derived from the 20% most rural stations is probably more 

representative of “rural United States” than the PHA-adjusted version.  

c. Reanalysis of Hausfather et al. (2013)’s USHCN aliasing experiments

The findings described above for the USHCN initially appear to contradict one of the

conclusions of Hausfather et al. (2013), an important study that attempted to quantify “the 

effect of urbanization on U.S. Historical Climatology Network temperature records”.  

As part of their analysis, Hausfather et al. (2013), briefly considered the possibility that 

aliasing of urbanization bias might be a concern for the USHCN. To test this, they repeated 

the PHA procedure using subsets of the COOP stations that had been divided into “rural” or 

“urban” according to one of four urbanization metrics (Fig. 11) for details of the station 

breakdown. 
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Figure 11 Breakdown of how many USHCN stations were classified as either “rural” or 

“urban” by each of Hausfather et al. (2013)’s four urbanity proxies. 

Since aliasing was not the primary focus of their study, their discussion of aliasing mostly 

focused on the results for the impervious surface area classification which identified the 29% 

most urban stations as “urban” and the remaining 71% as “rural” (Fig. 11c). However, they 

noted that the “(r)esults using the other three station classification approaches are similar” 

(Hausfather et al. 2013).  

Their discussion focused on Tmin trends since they had already established the urban 

warming effects were most obvious for this metric. They firstly confirmed that when urban-

only neighbors were used, significant aliasing of urban warming occurred for Tmin. However, 

they noted that the homogenization adjustments when using either rural-only neighbors or all 

neighbors were “nearly identical” and concluded that “the Coop neighbors that surround 

USHCN stations are sufficiently ‘rural’ to prevent a transfer of undetected urban bias from 

the neighbors to the USHCN station series during the homogenization procedure.” 
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(Hausfather et al. 2013). This assessment appears to have led them to conclude that aliasing 

was not a particular concern for the USHCN dataset at least. Indeed, they suggested that 

using all stations had the advantage of more dense station network. 

Therefore, we have reanalyzed the subsetting results from Hausfather et al. (2013) to 

investigate the reasons for the apparent contradiction with our findings. In Fig. 12, we have 

plotted the relevant linear trends for the longest period considered by Hausfather et al. (2013), 

i.e., 1895-2010. The annual adjustments are also plotted in Fig. S6. After analysis, we noted

that the archived data provided by NOAA for “rural using urban boundaries” and “rural using 

population growth” are identical copies.  

Figure 12 The 1895-2010 linear trends from the net gridded homogenization adjustments 

applied to (a) the Tmin data and (b) Tmax for the USHCN stations depending on whether they 

were homogenized using all COOP stations, i.e., the standard approach; only COOP stations 

identified by “rural” according to each of Hausfather et al. (2013)’s four urbanity proxies; 
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only COOP stations identified by “urban” according to each of Hausfather et al. (2013)’s four 

urbanity proxies. Note that in NOAA’s ftp archive of the Hausfather et al. (2013) results, the 

data for either “rural using urban boundaries” or “rural using population growth” appears to 

have been inadvertently duplicated and replaced the other, i.e., these two datasets are 

identical copies and therefore are plotted here with identical trends. 

We can confirm that the trends of the adjustments for Tmin are indeed “nearly identical” 

when using the impervious surface area “rural-only” stations or all stations, i.e., both add an 

extra +0.05°C/century to the homogenized trends (Fig. 12a). However, as can be seen from 

Fig. 11, this particular urbanization metric was the least restrictive of the four “rural” 

thresholds, only excluding 29% of the stations. When any of the other metrics were used, the 

1895-2010 Tmin trends of the adjustments were negative, i.e., homogenization cooled the 

USHCN temperature records. Indeed, for the most restrictive of the four “rural” thresholds 

(nightlights), the net adjustments led to a substantial cooling of –0.14°C/century. 

Our reanalysis also confirms Hausfather et al. (2013)’s other finding that using urban-

only neighbors leads to urban blending for Tmin (Fig. 12a). We note that the homogenization 

adjustments for Tmax are also different when using either rural-only or urban-only compared 

to all stations (Fig. 12b). 

Therefore, while Hausfather et al. (2013)’s discussion of aliasing was only a minor aspect 

of their study and their qualitative assessment that the adjustments for one of their “rural-

only” subsets were indeed “nearly identical”, we believe that their data confirm our findings 

that urban blending is a significant concern even for relatively rural regions such as the 

contiguous U.S. 

5. Discussion and conclusions

In this paper, we demonstrated the problem of urban blending associated with the

statistical homogenization of temperature records using two different countries as case 

studies – Japan and United States.  

Urban blending is a subtle, but insidious, unintended consequence of using a network of 

both urbanized and non-urbanized stations as reference stations for statistical homogenization 

(Section 2 for an overview). It reduces the apparent differences in temperature trends between 

the most urban and most rural stations by reducing the warming of the most urban stations 

and adding warming to the most rural stations (Figs. 7 and 9).  
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The net effect of urban blending is that the trends of all homogenized stations converge 

towards the average trends of the dataset. This is a problem because the converging of the 

trends is towards the average of the station network (i.e., a mix of urban and rural stations) 

rather than towards those of the least urbanized. Therefore, if a substantial amount of 

urbanization bias is associated with the unhomogenized (raw) temperature data, then urban 

blending will be a significant concern for the homogenized (adjusted) dataset. We emphasize 

that many attempts to evaluate the extent of urbanization biases by comparing the differences 

between homogenized rural and urban trends (e.g., Li et al. 2004; Peterson et al. 1999) do not 

appear to have considered this urban blending problem. 

Our analysis firstly reveals that the unhomogenized temperature records for Japan are 

heavily contaminated by urbanization bias. For example, the average temperature trends for 

Time range 3 of 1936-2019 (the longest period with a reasonable overlap for stations) of 

GHCN version 4 are +0.655°C/century for the most rural stations but +2.231°C/century for 

the most urban stations, i.e., 71% of the warming of the most urban stations could be due to 

urbanization (Table 1b). This range from 0.655 to 2.231°C/century encompasses 

1.65°C/century, i.e., the trend estimated for Time range 3 using the data from the Japan 

Meteorological Agency (JMA) for a selection of 15 stations that are considered not to have 

been highly influenced by urbanization and have continuous records from 1898 onwards  

(JMA 2022). However, past studies have suggested that even in this sample of 15 stations, 

there might still be some urbanization bias, since several of the sites are moderately 

urbanized (Fujibe and Ishihara 2010). 

For the United States, the network is not as heavily urbanized as Japan and there is a large 

number of rural stations with relatively long records (often covering more than a century). 

However, even here urbanization bias has noticeably affected the data. For example, for the 

unhomogenized records that have been empirically adjusted for documented changes in time-

of-observation, the Tavg trends for the longest period with a reasonable overlap for stations 

(1895-2022) are +0.616°C/century for the 20% most rural stations, in contrast to 

+0.948°C/century for the 20% most urban stations and +0.766°C/century for all stations

(rural and urban). That is, ~20% of the warming for the full network and ~35% for the most 

urban stations could be due to urbanization. 

Secondly, our analysis reveals urban blending is a serious problem for the homogenized 

records for both Japan (Fig. 7) and the United States (Fig. 9). Although a previous study 
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(Hausfather et al. 2013) had included an analysis that suggested urban blending was not a 

major problem for the USHCN, our reanalysis of the Hausfather et al. (2013) data reveals that 

urban blending is indeed a problem for the USHCN dataset. 

Some previous studies have cautioned against the urban blending problem, sometimes 

called “statistical aliasing of trends” (Connolly and Connolly 2014d; DeGaetano 2006; Pielke 

et al. 2007; Soon et al. 2015; Soon et al. 2018, 2019). Others have assessed the problem to be 

minor or negligible (Hausfather et al. 2013; Menne et al. 2009) or even beneficial (Menne 

and Williams 2009). Most studies appear to have overlooked the problem until now. 

However, the results of this study show that the problem should be a major concern for users 

of current homogenized temperature datasets. 

The goal of homogenizing temperature datasets is an admirable one―to reduce the non-

climatic biases in the underlying data―thereby hopefully allowing users of the homogenized 

datasets to assume any trends are genuinely climatic in nature. For this reason, current global 

LSAT estimates typically explicitly rely on homogenized records (Lenssen et al. 2019; 

Menne et al. 2018; Osborn et al. 2021; Sun et al. 2022; Vose et al. 2021). However, most 

current approaches to statistically homogenizing these temperature records do not appear to 

have explicitly considered the urban blending problem. Therefore, the homogenized 

temperature datasets currently being used for evaluating LSAT trends are contaminated by 

urban blending. 

In terms of global temperature datasets, the latest IPCC Working Group 1 report 

concluded that urbanization bias was unlikely to have contributed more than 10% to global 

land temperature trends, although they conceded that “larger signals have been identified in 

some specific regions, especially rapidly urbanizing areas such as eastern China” (IPCC 

2021). However, several studies disagree with that particular claim of the IPCC and suggest 

that urbanization bias might account for greater than 10% of the global land temperature 

trends (Soon et al. 2015; Connolly et al. 2021; Scafetta 2021; Zhang et al. 2021). Zhang et al. 

(2021) calculate that urbanization bias accounts for 12.7% of the 1951-2018 global land 

temperature trends. Soon et al. (2015)’s analysis implies that urbanization bias accounted for 

32.7% of the 1881-2014 trends for the Northern Hemisphere, while Connolly et al. (2021)’s 

update implies that urbanization bias accounted for 38.2% of 1850-2018 trends. Meanwhile 

Scafetta (2021) estimated that urbanization bias could account for up to 25-45% of the global 

warming of the last 40-80 years. 
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Another concern is that much of the justification for the IPCC’s low estimate of 

urbanization bias in the global temperature data appears to be based on homogenized 

temperature records. Therefore, their estimates may have been biased low due to urban 

blending. 

Therefore, given the wide range of estimates for the degree of urbanization bias in the 

global temperature datasets, it is still unclear exactly how widespread and how large the 

urban blending problem is. However, it is probably not insignificant and more research into 

this challenging problem should be encouraged. 

We note that this has implications for many attempts to attribute LSAT trends between 

natural and anthropogenic factors since most such attempts appear to implicitly assume the 

homogenized temperature is relatively unaffected by urbanization bias (e.g., Gillett et al. 

2021; Masson-Delmotte et al. 2021), other than a few exceptions (Connolly et al. 2021; Soon 

et al. 2015; Sun et al. 2016, 2019). 

In terms of solutions to the urban blending problem, one potential approach would be to 

avoid using reference stations for calculating the value of non-climatic biases associated with 

breakpoints, although they could still be used for identifying the breakpoints. Alternatively, 

Soon et al. (2018) offered another approach to reduce the problem. They suggested the urban 

blending problem should be substantially reduced if the reference stations used for 

homogenizing the data have a similar degree of urbanization to the target stations. They noted 

that studies that had explicitly developed a rural reference network before homogenizing may 

have indirectly reduced urban blending problems (e.g., Karl et al. 1988; Ren et al. 2015; Ren 

and Ren 2011; Shi et al. 2015). However, given that the longest and most-complete station 

records tend to be relatively urbanized, researchers may see some value in homogenizing 

urban records using similarly urbanized reference neighbors. The homogenization process 

could then reduce the non-urban-related biases with minimal urban blending. Correcting for 

urbanization bias could then be carried out after the homogenization process.  

Soon et al. (2018) cautioned that the blending problem could also occur for other non-

climatic biases that have similarly affected a large number of stations in a network, e.g., the 

siting biases identified by Fall et al. (2011) for the U.S. temperature data. Therefore, efforts to 

homogenize temperature datasets should ideally also consider the blending problems of other 

non-climatic biases. This could include expanding the site inspections of Fall et al. (2011) to 

establish if other regions, including Japan, are similarly affected.  
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Other efforts could include the collection and digitization of station history metadata from 

the station observers documenting any known non-climatic changes, e.g., as O’Neill et al. 

(2022) has been doing for Europe. Aside from generally helping to better identify potential 

non-climatic breakpoints, it could also reveal cases where systemic non-climatic biases 

occurred simultaneously or near-simultaneously across large regions, e.g., the documented 

shifts in observation times over the 20th century associated with the USHCN and COOP 

stations (Karl et al. 1986). We note that some station history metadata for Japanese stations is 

available online at https://www.data.jma.go.jp/obd/stats/data/mdrr/chiten/meta/discnt_sfc.csv 

[last accessed May 2023]. 

In the meantime, we advise users of temperature datasets to be wary of assuming that 

homogenized temperature records are automatically more reliable. It is true that 

unhomogenized temperature records are often plagued by non-climatic biases and that 

homogenization can often reduce these biases. However, due to urban blending, the 

homogenization process also inadvertently introduces many fresh non-climatic biases of its 

own. Users of both unhomogenized and homogenized temperature records should be very 

cautious about the problems of non-climatic biases. 

Finally, with regards to the implications of this analysis for Japan, Japan is a highly 

urbanized country with a population density of 347 people/km2 (~7 times the world average 

of 52 people/km2 and ~10 times the U.S. average of 36 people/km2) and 91.8% of the 

population is urban in 2020 (https://www.worldometers.info/world-population/japan-

population/, last accessed on 1 January, 2023). Therefore, one could argue that using 

urbanized stations to describe the climate of Japan is not a “bias”, since most of the 

population experiences an urban climate. However, the “urbanization bias” occurs when this 

localized urban warming of Japan is mistakenly assumed to be part of global warming. In the 

case of Japan, urban warming appears to have dominated temperature trends over the last 

century. Therefore, efforts to reduce future warming in Japan probably should prioritize 

urban heat island mitigation (Enteria et al. 2021), rather than focusing almost exclusively on 

reducing greenhouse gas emissions as currently appears to be the case (Sugiyama et al. 2019). 

Acknowledgments. 

Accepted for publication in Journal of Applied Meteorology and Climatology. DOI 10.1175/JAMC-D-22-0122.1.Brought to you by University of Delaware Library | Unauthenticated | Downloaded 07/14/23 08:46 PM UTC



39 

File generated with AMS Word template 2.0 

We thank Michael Connolly, Willie Soon, and Taishi Sugiyama for helpful comments 

and suggestions. We would like to thank the three anonymous reviewers for their feedback 

that substantially improved our manuscript. 

Data Availability Statement. 

The GHCN version 3 and 4 datasets used for our analysis were provided by National 

Oceanic and Atmospheric Administration (NOAA) and are available at 

https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-

network-monthly. The USHCN dataset was also provided by NOAA and available from their 

ftp website at: ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2.5. They also provide the data we 

used for our reanalysis of the Hausfather et al. (2013) results on aliasing at: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/papers/hausfather-etal2013-suppinfo/. 
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